Evaluation of Non-Uniform Image Quality Caused by Anode Heel Effect in Digital Radiography Using Mutual Information
Abstract
:1. Introduction
2. Materials and Methods
2.1. Circular Step-Wedge Phantom
2.2. Contrast-Detail Resolution Phantom
2.3. Image Data Acquisition
2.4. Mutual Information with a CSW Phantom
2.5. Visible Ratio with a CDR Phantom
2.6. Heel Effect Correction
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CSW | Circular Step-Wedge |
CDR | Contrast-Detail Resolution |
HEC | Heel Effect Correction |
MTF | Modulation Transfer Function |
nMI | normalized Mutual Information |
NPS | Noise Power Spectrum |
ROI | Region of Interest |
VR | Visible Ratio |
References
- Fujita, H.; Doi, K.; Giger, M.L. Investigation of Basic Imaging Properties in Digital Radiography. 6. Mtfs of Ii-Tv Digital Imag-ing-Systems. Med. Phys. 1985, 12, 713–720. [Google Scholar] [CrossRef]
- Giger, M.L.; Doi, K. Investigation of Basic Imaging Properties in Digital Radiography. 3. Effect of Pixel Size on Snr and Thresh-old Contrast. Med. Phys. 1985, 12, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Avakyan, A.K.; Dergacheva, I.L.; Elanchik, A.A.; Korovkin, D.Y.; Krylova, T.A.; Lobzhanidze, T.K.; Polikhov, S.A.; Smirnov, V.P. Method for Determining the Point Spread Function for a Digital Radiography System. At. Energy 2020, 127, 310–315. [Google Scholar] [CrossRef]
- Samei, E.; Ranger, N.T.; MacKenzie, A.; Honey, I.D.; Dobbins, J.T.; Ravin, C.E. Detector or System? Extending the Concept of Detec-tive Quantum Efficiency to Characterize the Performance of Digital Radiographic Imaging Systems. Radiology 2008, 249, 926–937. [Google Scholar] [CrossRef] [Green Version]
- Drangova, M.; Rowlands, J.A. Optical factors affecting the detective quantum efficiency of radiographic screens. Med. Phys. 1986, 13, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Bunch, P.C.; Huff, K.E.; Van Metter, R. Analysis of the detective quantum efficiency of a radiographic screen–film combination. J. Opt. Soc. Am. A 1987, 4, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Sund, P.; Bath, M.; Kheddache, S.; Mansson, L.G. Comparison of visual grading analysis and determination of detective quantum efficiency for evaluating system performance in digital chest radiography. Eur. Radiol. 2004, 14, 48–58. [Google Scholar] [PubMed]
- Uffmann, M.; Schaefer-Prokop, C.; Neitzel, U.; Weber, M.; Herold, C.J.; Prokop, M. Skeletal applications for flat-panel versus stor-age-phosphor radiography: Effect of exposure on detection of low-contrast details. Radiology 2004, 231, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Nickoloff, E.L.; So, J.C.; Dutta, A.K. Comparison of computed radiography and film/screen combination using a con-trast-detail phantom. J. Appl. Clin. Med. Phys. 2001, 4, 91–98. [Google Scholar] [CrossRef]
- Konst, B.; Weedon-Fekjaer, H.; Båth, M. Image quality and radiation dose in planar imaging—Image quality figure of merits from the CDRAD phantom. J. Appl. Clin. Med. Phys. 2019, 20, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Crop, A.; Bacher, K.; Van Hoof, T.; Smeets, P.V.; Smet, B.S.; Vergauwen, M.; Kiendys, U.; Duyck, P.; Verstraete, K.; D’Herde, K.; et al. Correlation of Contrast-Detail Analysis and Clinical Image Quality Assessment in Chest Radiography with a Human Ca-daver Study. Radiology 2012, 262, 298–304. [Google Scholar] [CrossRef]
- Weir, A.; Salo, E.-N.; Janeczko, A.J.; Douglas, J.; Weir, N.W. Evaluation of CDRAD and TO20 test objects and associated software in digital radiography. Biomed. Phys. Eng. Express 2019, 5, 065001. [Google Scholar] [CrossRef]
- Matsuyama, E.; Tsai, D.Y.; Lee, Y. Mutual information-based evaluation of image quality with its preliminary application to as-sessment of medical imaging systems. J. Electron. Imaging 2009, 18, 033011. [Google Scholar] [CrossRef]
- Tsai, D.-Y.; Lee, Y.; Matsuyama, E. Information Entropy Measure for Evaluation of Image Quality. J. Digit. Imaging 2007, 21, 338–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesbahi, A.; Zakariaee, S.S. Effect of anode angle on photon beam spectra and depth dose characteristics for X-RAD320 or-thovoltage unit. Rep. Pract. Oncol. Radiother. 2013, 18, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Kusk, M.W.; Jensen, J.M.; Gram, E.H.; Nielsen, J.; Precht, H. Anode heel effect: Does it impact image quality in digital radiography? A systematic literature review. Radiography 2021. [Google Scholar] [CrossRef]
- Mraity, H.; Walton, L.; England, A.; Thompson, J.; Lanca, L.; Hogg, P. Can the anode heel effect be used to optimise radiation dose and image quality for AP pelvis radiography? Radiography 2020, 26, e103–e108. [Google Scholar] [CrossRef] [PubMed]
- Buissink, C.; Bowdler, M.; Abdullah, A.; Al-Murshedi, S.; Custódio, S.; Huhn, A.; Jorge, J.; Ali, M.; Peters, A.L.; Rey, Y.; et al. Impact of the Anode Heel Effect on Image Quality and Effective Dose for AP Pelvis: A Pilot Study; University of Salford: Salford, UK, 2017. [Google Scholar]
- Behiels, G.; Maes, F.; Vandermeulen, D.; Suetens, P. Retrospective correction of the heel effect in hand radiographs. Med. Image Anal. 2002, 6, 183–190. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J. Heel effect adaptive flat field correction of digital X-ray detectors. Med. Phys. 2013, 40, 081913. [Google Scholar] [CrossRef]
- do Nascimento, M.Z.; Frere, A.F.; Germano, F. An automatic correction method for the heel effect in digitized mammography images. J. Digit. Imaging 2008, 21, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; A Wiley-Interscience Publication: New York, NY, USA, 1991. [Google Scholar]
- Szczepanski, J.; Arnold, M.; Wajnryb, E.; Amigo, J.M.; Sanchez-Vives, M.V. Mutual information and redundancy in spontaneous communication between cortical neurons. Biol. Cybern. 2011, 104, 161–174. [Google Scholar] [CrossRef] [Green Version]
- Pregowska, A.; Szczepanski, J.; Wajnryb, E. Mutual information against correlations in binary communication channels. BMC Neurosci. 2015, 16, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.Y. Statistical notes for clinical researchers: Post-hoc multiple comparisons. Restor. Dent. Endod. 2015, 40, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Saccenti, E.; Hendriks, M.; Smilde, A.K. Corruption of the Pearson correlation coefficient by measurement error and its estima-tion, bias, and correction under different error models. Sci. Rep. 2020, 10, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, S.N.; Fung, G.S.K.; Siewerdsen, J.H.; Tsui, B.M.W. A simple approach to measure computed tomography (CT) modulation transfer function (MTF) and noise-power spectrum (NPS) using the American College of Radiology (ACR) accreditation phantom. Med. Phys. 2013, 40, 051907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, M.-C. Evaluation of Non-Uniform Image Quality Caused by Anode Heel Effect in Digital Radiography Using Mutual Information. Entropy 2021, 23, 525. https://doi.org/10.3390/e23050525
Chou M-C. Evaluation of Non-Uniform Image Quality Caused by Anode Heel Effect in Digital Radiography Using Mutual Information. Entropy. 2021; 23(5):525. https://doi.org/10.3390/e23050525
Chicago/Turabian StyleChou, Ming-Chung. 2021. "Evaluation of Non-Uniform Image Quality Caused by Anode Heel Effect in Digital Radiography Using Mutual Information" Entropy 23, no. 5: 525. https://doi.org/10.3390/e23050525
APA StyleChou, M.-C. (2021). Evaluation of Non-Uniform Image Quality Caused by Anode Heel Effect in Digital Radiography Using Mutual Information. Entropy, 23(5), 525. https://doi.org/10.3390/e23050525