# Fluctuating Diffusivity of RNA-Protein Particles: Analogy with Thermodynamics

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Analogs of the Quantity of Heat and Work

## 3. Dependences on Temperature and the Analog of External Parameter

## 4. Analog of the Clausius Inequality

## 5. Geometric Perspective of the Change of Statistical Fluctuation

## 6. Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Lampo, T.J.; Stylianidou, S.; Backlund, M.P.; Wiggins, P.A.; Spakowitz, A.J. Cytoplasmic RNA-Protein Particles Exhibit Non-Gaussian Subdiffusive Behavior. Biophys. J.
**2017**, 112, 532–542. [Google Scholar] [CrossRef] [Green Version] - Golding, I.; Cox, E.C. Physical Nature of Bacterial Cytoplasm. Phys. Rev. Lett.
**2006**, 96, 098102. [Google Scholar] [CrossRef] [Green Version] - Stylianidou, S.; Kuwada, N.J.; Wiggins, P.A. Cytoplasmic Dynamics Reveals Two Modes of Nucleoid-Dependent Mobility. Biophys. J.
**2014**, 107, 2684–2692. [Google Scholar] [CrossRef] [Green Version] - Joyner, R.P.; Tang, J.H.; Helenius, J.; Dultz, E.; Brune, C.; Holt, L.J.; Huet, S.; Müller, D.J.; Weis, K. A glucose-starvation response regulates the diffusion of macromolecules. eLife
**2016**, 5, e09376. [Google Scholar] [CrossRef] - Bouchaud, J.-P.; Georges, A. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep.
**1990**, 195, 127–293. [Google Scholar] [CrossRef] - Höfling, F.; Franosch, T. Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys.
**2013**, 76, 046602. [Google Scholar] [CrossRef] [Green Version] - Metzler, R.; Jeon, J.-H.; Cherstvy, A.G.; Barkai, E. Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys.
**2014**, 16, 24128–24164. [Google Scholar] [CrossRef] [Green Version] - Wang, B.; Kuo, J.; Bae, S.C.; Granick, S. When Brownian diffusion is not Gaussian. Nat. Mater.
**2012**, 11, 481–485. [Google Scholar] [CrossRef] [PubMed] - He, W.; Song, H.; Su, Y.; Geng, L.; Ackerson, B.J.; Peng, H.B.; Tong, P. Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane. Nat. Commun.
**2016**, 7, 11701. [Google Scholar] [CrossRef] [Green Version] - Itto, Y. Time evolution of entropy associated with diffusivity fluctuations: Diffusing diffusivity approach. Eur. Phys. J. B
**2019**, 92, 164. Available online: https://epjb.epj.org/epjb-news/1776-epjb-highlight-entropy-explains-rna-diffusion-rates-in-cells (accessed on 2 August 2019). [CrossRef] [Green Version] - Jaynes, E.T. Papers on Probability, Statistics and Statistical Physics; Rosenkrantz, R.D., Ed.; Kluwer: Dordrecht, Germany, 1989. [Google Scholar]
- Reif, F. Fundamentals of Statistical and Thermal Physics; McGraw-Hill: Singapore, 1985. [Google Scholar]
- Chubynsky, M.V.; Slater, G.W. Diffusing Diffusivity: A Model for Anomalous, yet Brownian, Diffusion. Phys. Rev. Lett.
**2014**, 113, 098302. [Google Scholar] [CrossRef] [Green Version] - Wang, W.; Cherstvy, A.G.; Chechkin, A.V.; Thapa, S.; Seno, F.; Liu, X.; Metzler, R. Fractional Brownian motion with random diffusivity: Emerging residual nonergodicity below the correlation time. J. Phys. A Math. Theor.
**2020**, 53, 474001. [Google Scholar] [CrossRef] - Mandelbrot, B.B.; van Ness, J.W. Fractional Brownian motions, fractional noises and applications. SIAM Rev.
**1968**, 10, 422. [Google Scholar] [CrossRef] - Itto, Y. Entropy production rate of diffusivity fluctuations under diffusing diffusivity equation. J. Phys. Conf. Ser.
**2019**, 1391, 012054. [Google Scholar] [CrossRef] - Nelson, P. Biological Physics: Energy, Information, Life; W.H. Freeman and Company: New York, NY, USA, 2004. [Google Scholar]
- Kucsko, G.; Maurer, P.C.; Yao, N.Y.; Kubo, M.; Noh, H.J.; Lo, P.K.; Park, H.; Lukin, M.D. Nanometre-scale thermometry in a living cell. Nature
**2013**, 500, 54. [Google Scholar] [CrossRef] - Weber, S.C.; Spakowitz, A.J.; Theriot, J.A. Bacterial Chromosomal Loci Move Subdiffusively through a Viscoelastic Cytoplasm. Phys. Rev. Lett.
**2010**, 104, 238102. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Weber, S.C.; Theriot, J.A.; Spakowitz, A.J. Subdiffusive motion of a polymer composed of subdiffusive monomers. Phys. Rev. E
**2010**, 82, 011913. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Goychuk, I. Viscoelastic subdiffusion: From anomalous to normal. Phys. Rev. E
**2009**, 80, 046125. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Santamaría-Holek, I.; Rubí, J.M.; Gadomski, A. Thermokinetic Approach of Single Particles and Clusters Involving Anomalous Diffusion under Viscoelastic Response. J. Phys. Chem. B
**2007**, 111, 2293. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Itto, Y.; Beck, C. Superstatistical modelling of protein diffusion dynamics in bacteria. J. R. Soc. Interface
**2021**, 18, 20200927. [Google Scholar] [CrossRef] [PubMed] - Yu, S.; Sheats, J.; Cicuta, P.; Sclavi, B.; Lagomarsino, M.C.; Dorfman, K.D. Subdiffusion of loci and cytoplasmic particles are different in compressed Escherichia coli cells. Commun. Biol.
**2018**, 1, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Abe, S.; Thurner, S. Robustness of the second law of thermodynamics under generalizations of the maximum entropy method. EPL
**2008**, 81, 10004. [Google Scholar] [CrossRef] - Kullback, S. Information Theory and Statistics; Wiley: New York, NY, USA, 1959. [Google Scholar]
- Weber, P.; Bełdowski, P.; Bier, M.; Gadomski, A. Entropy Production Associated with Aggregation into Granules in a Subdiffusive Environment. Entropy
**2018**, 20, 651. [Google Scholar] [CrossRef] [PubMed] [Green Version]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Itto, Y.
Fluctuating Diffusivity of RNA-Protein Particles: Analogy with Thermodynamics. *Entropy* **2021**, *23*, 333.
https://doi.org/10.3390/e23030333

**AMA Style**

Itto Y.
Fluctuating Diffusivity of RNA-Protein Particles: Analogy with Thermodynamics. *Entropy*. 2021; 23(3):333.
https://doi.org/10.3390/e23030333

**Chicago/Turabian Style**

Itto, Yuichi.
2021. "Fluctuating Diffusivity of RNA-Protein Particles: Analogy with Thermodynamics" *Entropy* 23, no. 3: 333.
https://doi.org/10.3390/e23030333