Short-Term HRV Analysis Using Nonparametric Sample Entropy for Obstructive Sleep Apnea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Simulation Test
2.3. Short-Term Heart Rate Variability (HRV) Analysis
2.3.1. Preprocessing
2.3.2. Frequency Domain Analysis
2.3.3. Nonlinear Analysis
2.4. Validation
3. Results
3.1. Comparisons between the Simulation of Two Entropies
3.2. HRV Analysis among the Three Groups
3.3. Relevance and Obstructive Sleep Apnea (OSA) Screening
4. Discussion
4.1. Comparison and Summary
4.2. Method Motivation Analysis
4.3. Physiological Significance
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ballard, R.D.; Tan, W.C.; Kelly, P.L.; Pak, J.; Pandey, R.; Martin, R.J. Effect of Sleep and Sleep Deprivation on Ventilatory Response to Bronchoconstriction. J. Appl. Physiol. 1990, 69, 490–497. [Google Scholar] [CrossRef]
- Malhotra, A.; White, D.P. Obstructive Sleep Apnoea. Lancet 2002, 360, 237–245. [Google Scholar] [CrossRef]
- Caples, S.M.; Gami, A.S.; Somers, V.K. Obstructive Sleep Apnea. Ann. Intern. Med. 2005, 142, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Khoo, M.C.K.; Kim, T.S.; Berry, R.B. Spectral Indices of Cardiac Autonomic Function in Obstructive Sleep Apnea. Sleep 1999, 22, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, R. Obstructive Sleep Apnea: A Sleep Disorder with Major Effects on Health. Dm Dis. Mon. 2001, 47, 109–147. [Google Scholar] [CrossRef] [PubMed]
- Kapur, V.; Strohl, K.P.; Redline, S.; Iber, C.; O′Connor, G.; Nieto, J. Underdiagnosis of Sleep Apnea Syndrome in U.S. Communities. Sleep Breath. Schlaf Atm. 2002, 6, 49–54. [Google Scholar] [CrossRef]
- Young, T.; Evans, L.; Finn, L.; Palta, M. Estimation of the Clinically Diagnosed Proportion of Sleep Apnea Syndrome in Middle-Aged Men and Women. Sleep 1997, 20, 705–706. [Google Scholar] [CrossRef]
- Babaeizadeh, S.; White, D.P.; Pittman, S.D.; Zhou, S.H. Automatic Detection and Quantification of Sleep Apnea Using Heart Rate Variability. J. Electrocardiol. 2010, 43, 535–541. [Google Scholar] [CrossRef]
- Griffiths, K.R.; Quintana, D.S.; Hermens, D.F.; Spooner, C.; Tsang, T.W.; Clarke, S.; Kohn, M.R. Sustained Attention and Heart Rate Variability in Children and Adolescents with Adhd. Biol. Psychol. 2017, 124, 11–20. [Google Scholar] [CrossRef]
- Song, M.-K.; Ha, J.H.; Ryu, S.-H.; Yu, J.; Park, D.-H. The Effect of Aging and Severity of Sleep Apnea on Heart Rate Variability Indices in Obstructive Sleep Apnea Syndrome. Psychiatry Investig. 2012, 9, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Tarvainen, M.P.; Niskanen, J.-P.; Lipponen, J.A.; Ranta-aho, P.O.; Karjalainen, P.A. Kubios Hrv-Heart Rate Variability Analysis Software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Gula, L.J.; Krahn, A.D.; Skanes, A.; Ferguson, K.A.; George, C.; Yee, R.; Klein, G.J. Heart Rate Variability in Obstructive Sleep Apnea: A Prospective Study and Frequency Domain Analysis. Ann. Noninvasive Electrocardiol. 2003, 8, 144–149. [Google Scholar] [CrossRef]
- Gong, X.; Huang, L.; Liu, X.; Li, C.; Mao, X.; Liu, W.; Huang, X.; Chu, H.; Wang, Y.; Wu, W.; et al. Correlation Analysis between Polysomnography Diagnostic Indices and Heart Rate Variability Parameters among Patients with Obstructive Sleep Apnea Hypopnea Syndrome. PLoS ONE 2016, 11, e0156628. [Google Scholar] [CrossRef] [Green Version]
- Makikallio, T.H.; Tapanainen, J.M.; Tulppo, M.P.; Huikuri, H.V. Clinical Applicability of Heart Rate Variability Analysis by Methods Based on Nonlinear Dynamics. Card. Electrophysiol. Rev. 2002, 6, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Jons, C.; Raatikainen, P.; Gang, U.J.; Huikuri, H.V.; Joergensen, R.M.; Johannesen, A.; Dixen, U.; Messier, M.; McNitt, S.; Thomsen, P.E.B.; et al. Autonomic Dysfunction and New-Onset Atrial Fibrillation in Patients with Left Ventricular Systolic Dysfunction after Acute Myocardial Infarction: A Carisma Substudy. J. Cardiovasc. Electrophysiol. 2010, 21, 983–990. [Google Scholar] [CrossRef]
- Al-Angari, H.M.; Sahakian, A.V. Use of Sample Entropy Approach to Study Heart Rate Variability in Obstructive Sleep Apnea Syndrome. IEEE Trans. Biomed. Eng. 2007, 54, 1900–2004. [Google Scholar] [CrossRef]
- Ravelo-Garcia, A.G.; Navarro-Mesa, J.L.; Casanova-Blancas, U.; Martin-Gonzalez, S.; Quintana-Morales, P.; Guerra-Moreno, I.; Canino-Rodriguez, J.M.; Hernandez-Perez, E. Application of the Permutation Entropy over the Heart Rate Variability for the Improvement of Electrocardiogram-Based Sleep Breathing Pause Detection. Entropy 2015, 17, 914–927. [Google Scholar] [CrossRef]
- Li, Y.; Pan, W.; Li, K.; Jiang, Q.; Liu, G. Sliding Trend Fuzzy Approximate Entropy as a Novel Descriptor of Heart Rate Variability in Obstructive Sleep Apnea. IEEE J. Biomed. Health Inform. 2019, 23, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Voss, A.; Heitmann, A.; Schroeder, R.; Peters, A.; Perz, S. Short-Term Heart Rate Variability-Age Dependence in Healthy Subjects. Physiol. Meas. 2012, 33, 1289–1311. [Google Scholar] [CrossRef] [PubMed]
- Khandoker, A.H.; Karmakar, C.K.; Palaniswami, M. Comparison of Pulse Rate Variability with Heart Rate Variability during Obstructive Sleep Apnea. Med. Eng. Phys. 2011, 33, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Penzel, T.; Moody, G.B.; Mark, R.G.; Goldberger, A.L.; Peter, J.H.; Ieee, I. The Apnea-Ecg Database. Comput. Cardiol. 2000, 27, 255–258. [Google Scholar]
- Li, P.; Liu, C.; Li, K.; Zheng, D.; Liu, C.; Hou, Y. Assessing the Complexity of Short-Term Heartbeat Interval Series by Distribution Entropy. Med Biol. Eng. Comput. 2015, 53, 77–87. [Google Scholar] [CrossRef]
- Mayer, C.C.; Bachler, M.; Hörtenhuber, M.; Stocker, C.; Holzinger, A.; Wassertheurer, S. Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinform. 2014, 15, S2. [Google Scholar] [CrossRef] [Green Version]
- Castiglioni, P.; Di Rienzo, M. How the threshold r influences approximate entropy analysis of heart-rate variability. Comput. Cardiol. 2008, 561–564. [Google Scholar] [CrossRef]
- Shahar, E.; Whitney, C.W.; Redline, S.; Lee, E.T.; Newman, A.B.; Nieto, F.J.; O′Connor, G.T.; Boland, L.L.; Schwartz, J.E.; Samet, J.M. Sleep-Disordered Breathing and Cardiovascular Disease: Cross-Sectional Results of the Sleep Heart Health Study. Am. J. Respir. Crit. Care Med. 2001, 163, 19–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.F.; Wu, S.; Yang, Q.A.N.; Liu, G.Z.; Ge, L.J. Application of the Variance Delay Fuzzy Approximate Entropy for Autonomic Nervous System Fluctuation Analysis in Obstructive Sleep Apnea Patients. Entropy 2020, 22, 915. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate Entropy as a Measure of System Complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penzel, T.; Kantelhardt, J.W.; Grote, L.; Peter, J.H.; Bunde, A. Comparison of Detrended Fluctuation Analysis and Spectral Analysis for Heart Rate Variability in Sleep and Sleep Apnea. IEEE Trans. Biomed. Eng. 2003, 50, 1143–1151. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhang, X.; Song, C. An Automatic Screening Approach for Obstructive Sleep Apnea Diagnosis Based on Single-Lead Electrocardiogram. IEEE Trans. Autom. Sci. Eng. 2015, 12, 106–115. [Google Scholar] [CrossRef]
- Lake, D.E.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample Entropy Analysis of Neonatal Heart Rate Variability. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2002, 283, R789–R797. [Google Scholar] [CrossRef] [Green Version]
- Udhayakumar, R.K.; Karmakar, C.; Palaniswami, M. Understanding Irregularity Characteristics of Short-Term Hrv Signals Using Sample Entropy Profile. IEEE Trans. Biomed. Eng. 2018, 65, 2569–2579. [Google Scholar] [CrossRef] [PubMed]
- Hamid, N.A.; Sjarif, N.N.A. Handwritten recognition using SVM, KNN and neural network. arXiv 2017, arXiv:1702.00723. [Google Scholar]
- Ao, D.; Sun, R.; Tong, K.-Y.; Song, R. Characterization of Stroke- and Aging-Related Changes in the Complexity of Emg Signals During Tracking Tasks. Ann. Biomed. Eng. 2015, 43, 990–1002. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, A.; Cybulski, G. New Indices for Sleep Apnea Detection from Long-Time Ecg Recordings. In Proceedings of the 2015 Computing in Cardiology Conference, Nice, France, 6–9 September 2015. [Google Scholar]
- Ravelo-García, A.G.; Casanova-Blancas, U.; Martín-González, S.; Hernández-Pérez, E.; Morales, P.Q.; Navarro-Mesa, J.L. An Approach to the Improvement of Electrocardiogram-Based Sleep Breathing Pauses Detection by Means of Permutation Entropy of the Heart Rate Variability. In Proceedings of the 3rd IEEE International Work-Conference on Bioinspired Intelligence, Liberia, Costa Rica, 16–18 July 2014. [Google Scholar]
- Varon, C.; Caicedo, A.; Testelmans, D.; Buyse, B.; Van Huffel, S. A Novel Algorithm for the Automatic Detection of Sleep Apnea from Single-Lead Ecg. IEEE Trans. Biomed. Eng. 2015, 62, 2269–2278. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Pan, W.; Li, Y.; Jiang, Q.; Liu, G. A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal. Neurocomputing 2018, 294, 94–101. [Google Scholar] [CrossRef]
- Feng, K.; Qin, H.; Wu, S.; Pan, W.; Liu, G. A sleep apnea detection method based on unsupervised feature learning and single-lead electrocardiogram. IEEE Trans. Instrum. Meas. 2020, 70. [Google Scholar] [CrossRef]
- Wu, S.; Liang, D.; Yang, Q.; Liu, G. Regularity of heart rate fluctuations analysis in obstructive sleep apnea patients using information-based similarity. Biomed. Signal Process. Control 2021, 65, 102370. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Q.; Chen, S.; Zhou, G.; Chen, W.; Wu, Y. Robustness Evaluation of Heart Rate Variability Measures for Age Gender Related Autonomic Changes in Healthy Volunteers. Australas. Phys. Eng. Sci. Med. 2014, 37, 567–574. [Google Scholar] [CrossRef]
Indices | N (Mean ± SD) | MOSA (Mean ± SD) | SOSA (Mean ± SD) | p Value | |||
---|---|---|---|---|---|---|---|
N & MOSA | N & SOSA | MOSA & SOSA | |||||
Entropy | SampEn | 0.587 ± 0.058 | 0.564 ± 0.094 | 0.443 ± 0.097 | 0.426 | 0 *** | 0 *** |
NPSampEn | 0.270 ± 0.014 | 0.243 ± 0.039 | 0.199 ± 0.029 | 0.006 ** | 0 *** | 0 *** | |
Frequency domain | LF | 0.0060 ± 0.0075 | 0.0010 ± 0.0007 | 0.022 ± 0.054 | 0.687 | 0.150 | 0.088 |
HF | 0.0050 ± 0.0078 | 0.00047 ± 0.00042 | 0.0074 ± 0.022 | 0.404 | 0.608 | 0.184 | |
LF/HF | 2.049 ± 0.717 | 3.785 ± 2.000 | 4.975 ± 2.437 | 0.012 * | 0 *** | 0.067 |
Indices | TP | TN | FP | FN | ACC | SEN | SPE | AUC | |
---|---|---|---|---|---|---|---|---|---|
Nonlinear indices | SampEn | 29 | 12 | 8 | 11 | 68.3% | 72.5% | 60.0% | 0.581 |
NPSampEn | 31 | 19 | 1 | 9 | 83.3% | 77.5% | 95.0% | 0.795 | |
Frequency domain | LF/HF | 29 | 15 | 5 | 11 | 73.3% | 72.5% | 75% | 0.628 |
Reference | Method | Features | Length of RR Segment | Results |
---|---|---|---|---|
Pietrzak et al. [34] | Standard deviation of successive difference | single feature | 1000 s | ACC = 88.5% SEN = 96.0% SPE = 70.0% |
Ravelo-García et al. [35] | Permutation entropy | multi-feature | 5 min | ACC = 78.0% SEN = 64.3% SPE = 86.5% |
Li et al. [26] | Variance delay fuzzy approximate entropy | single feature | 5 min | ACC = 90.0% SEN = 87.5% SPE = 95.0% |
Al-Angari et al. [16] | Sample entropy m = 1, 2, 3 | multi-feature | 1 min | ACC = 70.3% SEN = 69.5% SPE = 70.8% |
Varon et al. [36] | support vector machine | multi-feature | 1 min | ACC = 84.7% SEN = 84.7% SPE = 84.7% |
Proposed method | Nonparametric sample entropy | single feature | 1 min | ACC = 83.3% SEN = 77.5% SPE = 95.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, D.; Wu, S.; Tang, L.; Feng, K.; Liu, G. Short-Term HRV Analysis Using Nonparametric Sample Entropy for Obstructive Sleep Apnea. Entropy 2021, 23, 267. https://doi.org/10.3390/e23030267
Liang D, Wu S, Tang L, Feng K, Liu G. Short-Term HRV Analysis Using Nonparametric Sample Entropy for Obstructive Sleep Apnea. Entropy. 2021; 23(3):267. https://doi.org/10.3390/e23030267
Chicago/Turabian StyleLiang, Duan, Shan Wu, Lan Tang, Kaicheng Feng, and Guanzheng Liu. 2021. "Short-Term HRV Analysis Using Nonparametric Sample Entropy for Obstructive Sleep Apnea" Entropy 23, no. 3: 267. https://doi.org/10.3390/e23030267
APA StyleLiang, D., Wu, S., Tang, L., Feng, K., & Liu, G. (2021). Short-Term HRV Analysis Using Nonparametric Sample Entropy for Obstructive Sleep Apnea. Entropy, 23(3), 267. https://doi.org/10.3390/e23030267