A Unified Approach to Local Quantum Uncertainty and Interferometric Power by Metric Adjusted Skew Information
Abstract
:1. Introduction
2. Means for Positive Numbers
- 1.
- 2.
- 3.
- 4.
- and
- 5.
- m is continuous;
- 6.
- m is positively homogeneous; that is for
- 1.
- f is continuous;
- 2.
- f is monotone increasing;
- 3.
- ;
- 4.
- .
3. Means for Positive Operators in the Sense of Kubo-Ando
- 1.
- f is operator monotone increasing;
- 2.
- 3.
4. Quantum f-Covariance
5. Quantum Fisher Information
6. The correspondence
7. Metric Adjusted Skew Information
7.1. Information Inequalities
7.2. The Wigner–Yanase–Dyson Skew Informations
7.3. The Monotonous Bridge
8. Metric Adjusted Local Quantum Uncertainty
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum Entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef] [Green Version]
- Ollivier, H.; Zurek, W.H. Quantum Discord: A Measure of the Quantumness of Correlations. Phys. Rev. Lett. 2001, 88, 017901. [Google Scholar] [CrossRef]
- Henderson, L.; Vedral, V. Classical, quantum and total correlations. J. Phys. A 2001, 34, 6899. [Google Scholar] [CrossRef]
- Modi, K.; Brodutch, A.; Cable, H.; Paterek, T.; Vedral, V. The classical-quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys. 2012, 84, 1655. [Google Scholar] [CrossRef] [Green Version]
- Uhlmann, A. The Metric of Bures and the Geometric Phase; Groups and Related Topics; Gielerak, R., Lukierski, J., Popowicz, Z., Eds.; Kluwer Academic Publishers: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Bengtsson, I.; Zyczkowski, K. Geometry of Quantum States; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ay, N.; Gibilisco, P.; Matus, F. (Eds.) Information Geometry and its Applications; Springer Proceedings in Mathematics & Statistics; Springer: Berlin/Heidelberg, Germany, 2018; Volume 252. [Google Scholar]
- Cianciaruso, M.; Frérot, I.; Tufarelli, T.; Adesso, G. Characterising two-sided quantum correlations beyond entanglement via metric-adjusted f-correlations. In Information Geometry and its Applications; Springer Proceedings in Mathematics & Statistics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 411–430. [Google Scholar]
- Fanchini, F.F.; Pinto, D.O.S.; Adesso, G. (Eds.) Lectures on General Quantum Correlations and their Applications; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Bogaert, P.; Girolami, D. Metrological measures of non-classical correlations. In Lectures on General Quantum Correlations and their Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 159–179. [Google Scholar]
- Gibilisco, P.; Imparato, D.; Isola, T. Inequalities for quantum Fisher information. Proc. Am. Math. Soc. 2009, 137, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Gibilisco, P.; Isola, T. How to distinguish quantum covariances using uncertainty relations. J. Math. Anal. App. 2011, 384, 670–676. [Google Scholar] [CrossRef]
- Girolami, D.; Tufarelli, T.; Adesso, G. Characterizing Nonclassical Correlations via Local Quantum Uncertainty. Phys. Rev. Lett. 2013, 110, 240402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girolami, D.; Souza, A.M.; Giovannetti, V.; Tufarelli, T.; Filgueiras, J.G.; Sarthour, R.S.; Soares-Pinto, D.O.; Oliveira, I.S.; Adesso, G. Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 2014, 112, 210401. [Google Scholar] [CrossRef] [Green Version]
- Wigner, E.P.; Yanase, M.M. Information content of distributions. Proc. Nat. Acad. Sci. USA 1963, 49, 910–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in Quantum Metrology. Nat. Phot. 2011, 5, 222. [Google Scholar] [CrossRef]
- Hansen, F. Metric adjusted skew information. Proc. Nat. Acad. Sci. USA 2008, 105, 9909–9916. [Google Scholar] [CrossRef] [Green Version]
- Petz, D.; Temesi, R. Means of positive numbers. SIAM J. Matrix Anal. Appl. 2005, 27, 712–720. [Google Scholar] [CrossRef]
- Gibilisco, P.; Hansen, F.; Isola, T. On a correspondence between regular and non-regular operator monotone functions. Linear Algebra Appl. 2009, 430, 2225–2232. [Google Scholar] [CrossRef] [Green Version]
- Kubo, F.; Ando, T. Means of positive linear operators. Math. Ann. 1980, 246, 205–224. [Google Scholar] [CrossRef]
- Gibilisco, P.; Hansen, F. An inequality for expectation of means of positive random variable. Ann. Funct. Anal. 2017, 8, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Gibilisco, P.; Hiai, F.; Petz, D. Quantum covariance, quantum Fisher information and the uncertainty relations. IEEE Trans. Inform. Theory 2009, 55, 439–443. [Google Scholar] [CrossRef] [Green Version]
- Petz, D. Covariance and Fisher information in quantum mechanics. J. Phys. A 2003, 35, 79–91. [Google Scholar] [CrossRef]
- Gibilisco, P.; Imparato, D.; Isola, T. Uncertainty principle and quantum Fisher information II. J. Math. Phys 2007, 48, 072109. [Google Scholar] [CrossRef] [Green Version]
- Čencov, N.N. Statistical Decision rules and Optimal Inference; American Mathematical Society: Providence, RI, USA, 1982. [Google Scholar]
- Petz, D. Monotone metrics on matrix spaces. Linear Algebra Appl. 1996, 244, 81–96. [Google Scholar] [CrossRef] [Green Version]
- Petz, D.; Sudár, C. Geometry of quantum states. J. Math Phys. 1996, 37, 2662–2673. [Google Scholar] [CrossRef] [Green Version]
- Fick, E.; Sauermann, G. The Quantum Statistics of Dynamic Processes; Springer Series in Solid-State Sciences; Springer: Berlin/Heidelberg, Germany, 1990; Volume 86. [Google Scholar]
- Toth, G.; Petz, D. Extremal properties of the variance and the quantum Fisher information. Phys. Rev. A 2013, 87, 032324. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Hansen, F. Metric adjusted skew information: Convexity and restricted forms of superadditivity. Lett. Math. Phys. 2010, 93, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Audenaert, K.; Cai, L.; Hansen, F. Inequality for quantum skew information. Lett. Math. Phys. 2008, 85, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Piani, M.; Horodecki, P.; Horodecki, R. No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 2008, 100, 90502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, S.; Zhang, Q. Superadditivity of Wigner-Yanase-Dyson information revisited. J. Stat. Phys. 2008, 131, 1169–1177. [Google Scholar] [CrossRef]
- Girolami, D.; Tufarelli, T.; Susa, C.E. Quantifying genuine multipartite correlations and their pattern complexity. Phys. Rev. Lett. 2017, 119, 140505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name | f | |
---|---|---|
arithmetic | ||
WYD, | ||
geometric | ||
harmonic | ||
logarithmic |
f | |
---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibilisco, P.; Girolami, D.; Hansen, F. A Unified Approach to Local Quantum Uncertainty and Interferometric Power by Metric Adjusted Skew Information. Entropy 2021, 23, 263. https://doi.org/10.3390/e23030263
Gibilisco P, Girolami D, Hansen F. A Unified Approach to Local Quantum Uncertainty and Interferometric Power by Metric Adjusted Skew Information. Entropy. 2021; 23(3):263. https://doi.org/10.3390/e23030263
Chicago/Turabian StyleGibilisco, Paolo, Davide Girolami, and Frank Hansen. 2021. "A Unified Approach to Local Quantum Uncertainty and Interferometric Power by Metric Adjusted Skew Information" Entropy 23, no. 3: 263. https://doi.org/10.3390/e23030263
APA StyleGibilisco, P., Girolami, D., & Hansen, F. (2021). A Unified Approach to Local Quantum Uncertainty and Interferometric Power by Metric Adjusted Skew Information. Entropy, 23(3), 263. https://doi.org/10.3390/e23030263