On the Cryptanalysis of a Latin Cubes-Based Image Cryptosystem
Abstract
:1. Introduction
2. Review of Target Image Cryptosystem
3. Cryptanalysis
3.1. Vulnerability Analysis
3.2. Reference-Validation Inference Algorithm
3.2.1. Simplify the Pre-Permutation Phase
3.2.2. CPV-Preserving Group
3.2.3. What Controls the CPV
3.2.4. Pair of Reference Plain-Cipher Images
- [step-1]: using a pair of reference plain-cipher images to detect leftmost and rightmost landmark positions for the CPV-changing group (discussed in this subsection);
- [step-2]: using a pair of validation plain-cipher images to determine the index , whosecorresponds to the leftmost landmark position (discussed in Section 3.2.5);
- [step-3]: using the leftmost landmark position to measure, where n (discussed in Section 3.2.6).
- (i)
- andare selected fromwhilecomes from;
- (ii)
- the corresponding three landmark positions satisfy the inequality.
3.2.5. Pair of Validation Plain-Cipher Images
3.2.6. CPV-Changing Group
3.3. Screening-Based Rules
3.4. Performance Analysis
4. Experimental Results
4.1. Results of the Cryptanalysis Algorithm
4.2. Efficiency of the Cryptanalysis Algorithm
4.3. Comparative Studies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lian, S.G. Multimedia Content Encryption Techniques and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 1–6. [Google Scholar]
- Grangetto, M.; Magli, E.; Olmo, G. Multimedia selective encryption by means of randomized arithmetic coding. IEEE Trans. Multimed. 2006, 8, 905–917. [Google Scholar] [CrossRef]
- Kaur, M.; Kurmar, V. A comprehensive review on image encryption techniques. Arch. Comput. Method Eng. 2020, 27, 15–43. [Google Scholar] [CrossRef]
- Chai, X.L.; Gan, Z.H.; Yuan, K.; Chen, Y.R.; Liu, X.X. A novel image encryption scheme based on DNA sequence operations and chaotic systems. Neural Comput. Appl. 2019, 31, 219–237. [Google Scholar] [CrossRef]
- Song, W.; Zheng, Y.; Fu, C.; Shan, P.F. A novel batch image encryption algorithm using parallel computing. Inf. Sci. 2020, 518, 211–224. [Google Scholar] [CrossRef]
- Liu, L.D.; Jiang, D.H.; An, T.Y.; Guan, Y.F. A plaintext-related dynamical image encryption algorithm based on permutation-combination-diffusion architecture. IEEE Access 2020, 8, 62785–62799. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Zhang, W.; Wong, K.W.; Yu, H. A chaos-based symmetric image encryption scheme using a bit-level permutation. Inf. Sci. 2011, 181, 1171–1186. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, H.; Zhao, Y.L.; Zhu, Z.L. Image encryption based on three-dimensional bit matrix permutation. Signal Process. 2016, 118, 36–50. [Google Scholar] [CrossRef]
- Shafique, A.; Shahid, J. Novel image encryption cryptosystem based on binary bit planes extraction and multiple chaotic maps. Eur. Phys. J. Plus 2018, 133, 331. [Google Scholar] [CrossRef]
- Cai, S.T.; Huang, L.Q.; Chen, X.S.; Xiong, X.M. A symmetric plaintext-related color image encryption system based on bit permutation. Entropy 2018, 20, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, Z.H.; Chai, X.L.; Han, D.J.; Chen, Y.R. A chaotic image encryption algorithm based on 3-D bit-plane permutation. Neural Comput. Appl. 2019, 31, 7111–7130. [Google Scholar] [CrossRef]
- Pak, C.; An, K.; Jang, P.; Kim, J.; Kim, S. A novel bit-level color image encryption using improved 1D chaotic map. Multimed. Tools Appls. 2019, 78, 12027–12042. [Google Scholar] [CrossRef]
- Xu, M.; Tian, Z.H. A novel image cipher based on 3D bit matrix and latin cubes. Inf. Sci. 2019, 478, 1–14. [Google Scholar] [CrossRef]
- Shahna, K.U.; Mohamed, A. A novel image encryption scheme using both pixel level and bit level permutation with chaotic map. Appl. Soft Comput. 2020, 90, 106162. [Google Scholar]
- Zhang, Y.Q.; Wang, X.Y. Analysis and improvement of a chaos-based symmetric image encryption scheme using a bit-level permutation. Nonlinear Dyn. 2014, 77, 687–698. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhao, H.Y. Cracking and improvement of an image encryption algorithm based on bit-level permutation and chaotic system. IEEE Access 2019, 7, 112836–112847. [Google Scholar]
- Wu, J.H.; Liao, X.F.; Yang, B. Cryptanalysis and enhancements of image encryption based on three-dimensional bit matrix permutation. Signal Process. 2018, 142, 292–300. [Google Scholar] [CrossRef]
- Li, M.; Guo, Y.Z.; Huang, J.; Li, Y. Cryptanalysis of a chaotic image encryption scheme based on permutation-diffusion structure. Signal Process. Image Commun. 2018, 62, 164–172. [Google Scholar] [CrossRef]
- Li, M.; Wang, P.C.; Liu, Y.F.; Fan, H.J. Cryptanalysis of a novel bit-level color image encryption using improved 1D chaotic map. IEEE Access 2019, 7, 145798–145806. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.; Wu, J.H. Cryptanalysis and enhancement of an image encryption scheme based on bit-plane extraction and multiple chaotic maps. IEEE Access 2019, 7, 74070–74080. [Google Scholar] [CrossRef]
- Wen, H.P.; Yu, S.M. Cryptanalysis of an image encryption cryptosystem based on binary bit planes extraction and multiple chaotic maps. Eur. Phys. J. Plus 2019, 134, 337. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Yu, S.M. On the security of a Latin-bit cube-based image chaotic encryption algorithm. Entropy 2019, 21, 888. [Google Scholar] [CrossRef] [Green Version]
- Sprott, J.C. Chaos and Time-Series Analysis; Oxford University Press: Oxford, UK, 2003; pp. 17–189. [Google Scholar]
- Berlekamp, E.; Rumsey, H.; Solomon, G. On the solution of algebraic equations over finite fields. Inf. Comput. 1967, 10, 553–564. [Google Scholar] [CrossRef] [Green Version]
CPV | s−1(n) | Size | |||
---|---|---|---|---|---|
CPV-preserving group | even | even | even | ||
CPV-changing group | odd | odd | odd |
IDs | Directions | Plain Image | Cipher Image | Decrypted Image | |
---|---|---|---|---|---|
Partially | Completely | ||||
Lena | horizontal | 0.9740 | −0.0004 | −0.0057 | 0.9740 |
vertical | 0.9863 | −0.0025 | 0.0069 | 0.9863 | |
diagonal | 0.9612 | −0.0041 | −0.0030 | 0.9612 | |
Baboon | horizontal | 0.9334 | 0.0027 | 0.0182 | 0.9334 |
vertical | 0.9102 | 0.0145 | −0.0116 | 0.9102 | |
diagonal | 0.8635 | 0.0011 | −0.0114 | 0.8635 | |
Testpat | horizontal | 0.7395 | 0.0060 | −0.0152 | 0.7395 |
vertical | 0.7654 | −0.0107 | 0.0127 | 0.7654 | |
diagonal | 0.7320 | 0.0200 | −0.0200 | 0.7320 | |
Wedge | horizontal | 0.9973 | 0.0003 | −0.0144 | 0.9973 |
vertical | 0.9998 | −0.0107 | −0.0229 | 0.9998 | |
diagonal | 0.9971 | −0.0018 | 0.0051 | 0.9971 | |
Black | horizontal | NaN | 0.0030 | NaN | NaN |
vertical | NaN | −0.0022 | NaN | NaN | |
diagonal | NaN | 0.0039 | NaN | NaN |
IDs | Using Default Keys | Using New Keys | ||
---|---|---|---|---|
Zhang’s Work [22] | Ours | Zhang’s Work [22] | Ours | |
Lena | 164.0 | 131.0 | 164.0 | 131.0 |
Baboon | 163.2 | 131.0 | 163.4 | 131.0 |
Testpat | 163.6 | 131.0 | 163.6 | 131.0 |
Wedge | 164.8 | 131.0 | 164.6 | 131.0 |
Black | 163.6 | 131.0 | 164.0 | 131.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Liu, H.; Liao, X.; Dong, A. On the Cryptanalysis of a Latin Cubes-Based Image Cryptosystem. Entropy 2021, 23, 202. https://doi.org/10.3390/e23020202
Huang R, Liu H, Liao X, Dong A. On the Cryptanalysis of a Latin Cubes-Based Image Cryptosystem. Entropy. 2021; 23(2):202. https://doi.org/10.3390/e23020202
Chicago/Turabian StyleHuang, Rong, Hao Liu, Xiaojuan Liao, and Aihua Dong. 2021. "On the Cryptanalysis of a Latin Cubes-Based Image Cryptosystem" Entropy 23, no. 2: 202. https://doi.org/10.3390/e23020202
APA StyleHuang, R., Liu, H., Liao, X., & Dong, A. (2021). On the Cryptanalysis of a Latin Cubes-Based Image Cryptosystem. Entropy, 23(2), 202. https://doi.org/10.3390/e23020202