A Partial Derivative Approach to the Change of Scale Formula for the Function Space Integral
Abstract
1. Motivation and Introduction
2. Definitions and Notations
3. Main Results
4. Conclusions
Funding
Conflicts of Interest
References
- Johnson, G.W.; Lapidus, M.L. The Feynman Integral and Feynman’s Operational Calculus; Oxford Science Publications: Oxford, UK, 2000. [Google Scholar]
- Cameron, R.H. The translation pathology of Wiener space. Duke Math J. 1954, 21, 623–628. [Google Scholar] [CrossRef]
- Cameron, R.H.; Martin, W.T. Transformations of Wiener integrals under translations. Ann. Math. 1944, 45, 386–396. [Google Scholar] [CrossRef]
- Cameron, R.H.; Martin, W.T. Transformations for Wiener integrals under a general class of linear transformations. Trans. Am. Math. Soc. 1945, 58, 184–219. [Google Scholar] [CrossRef]
- Cameron, R.H.; Martin, W.T. The behavior of measure and measurability under change of scale in Wiener space. Bull. Am. Math. Soc. 1947, 53, 130–137. [Google Scholar] [CrossRef]
- Cameron, R.H.; Storvick, D.A. Some Banach algebras of analytic Feynman integrable functionals. In Analytic Functions Kozubnik 1979; Lecture Notes in Mathematics 798; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1980; pp. 18–67. [Google Scholar]
- Cameron, R.H.; Storvick, D.A. Change of scale formulas for Wiener integral. Rend. Circ. Mat. Palermo 1987, 17 (Suppl. 2), 105–115. [Google Scholar]
- Cameron, R.H.; Storvick, D.A. Relationships between the Wiener integral and the analytic Feynman integral. Rend. Circ. Mat. Palermo. 1987, 17 (Suppl. 2), 117–133. [Google Scholar]
- Kim, Y.S. A change of scale formula for Wiener Integrals of cylinder functions on abstract Wiener space. Int. J. Math. Math. Sci. 1998, 21, 73–78. [Google Scholar] [CrossRef]
- Kim, Y.S. Feynman integral and a change of scale formula about the first variation and a Fourier-Stieltjes transform. Mathematics 2020, 8, 1666. [Google Scholar] [CrossRef]
- Kim, Y.S. Analytic Feynman integral and a change of scale formula for Wiener integrals of an unbounded cylinder functon. Complexity 2020, 2020, 2671474. [Google Scholar]
- Kim, Y.S. A change of scale formula for Wiener Integrals of cylinder functions on abstract Wiener space II. Int. J. Math. Math. Sci. 2001, 25, 231–237. [Google Scholar] [CrossRef]
- Kim, Y.S. Behavior of the first variation under a Fourier Feynman transform for cylinder functions on Wiener spaces II. Integral Transform. Spec. Funct. 2010, 21, 13–23. [Google Scholar] [CrossRef]
- Kim, Y.S. Partial derivative approach to the integral transform for the function space in the Banach algebra. Entropy 2020, 22, 1047. [Google Scholar]
- Johnson, G.W.; Skoug, G.L. Scale-invariant measurability in Wiener space. Pac. J. Math. 1979, 83, 157–176. [Google Scholar] [CrossRef][Green Version]
- Cameron, R.H. The first variation of an indefinite integral. Proc. Am. Soc. 1951, 2, 914–924. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.S. A Partial Derivative Approach to the Change of Scale Formula for the Function Space Integral. Entropy 2021, 23, 26. https://doi.org/10.3390/e23010026
Kim YS. A Partial Derivative Approach to the Change of Scale Formula for the Function Space Integral. Entropy. 2021; 23(1):26. https://doi.org/10.3390/e23010026
Chicago/Turabian StyleKim, Young Sik. 2021. "A Partial Derivative Approach to the Change of Scale Formula for the Function Space Integral" Entropy 23, no. 1: 26. https://doi.org/10.3390/e23010026
APA StyleKim, Y. S. (2021). A Partial Derivative Approach to the Change of Scale Formula for the Function Space Integral. Entropy, 23(1), 26. https://doi.org/10.3390/e23010026