Lagrangian Submanifolds of Symplectic Structures Induced by Divergence Functions
Abstract
:1. Introduction
2. Synopsis of Symplectic Geometry
2.1. Symplectic Structures Defined by Divergence Functions
- (i)
- only on
- (ii)
- and on
- (iii)
- is positive definite on
2.2. Canonical Divergence and Exponential Families
3. Application to Maximum Entropy Principle with Nonlinear Constraints and Phase Transitions
3.1. The Global Picture via Lagrange Submanifold
3.2. Probability Distributions in
4. Discussion
Funding
Conflicts of Interest
References
- Amari, S. Information Geometry and Its Applications; Springer: Berlin/Heidelberg, Germany, 2016; Volume 194. [Google Scholar]
- Amari, S.; Hiroshi, N. Methods of Information Geometry; American Mathematical Soc.: Providence, RI, USA, 2007; Volume 191. [Google Scholar]
- Murray, M.K.; Rice, J.W. Differential Geometry and Statistics; CRC Press: Boca Raton, FL, USA, 1993; Volume 48. [Google Scholar]
- Amari, S.; Cichocki, A. Information geometry of divergence functions. Bull. Pol. Acad. Sci. Tech. 2010, 58, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Eguchi, S. A differential geometric approach to statistical inference on the basis of contrast functionals. Hiroshima Math. J. 1985, 15, 341–391. [Google Scholar] [CrossRef]
- Ay, N.; Amari, S. A novel approach to canonical divergences within information geometry. Entropy 2015, 17, 8111–8129. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.E.; Jupp, P.E. Statistics, yokes and symplectic geometry. Ann. Fac. Sci. Toulouse Math. 1997, 6, 389–427. [Google Scholar] [CrossRef]
- Leok, M.; Zhang, J. Connecting information geometry and geometric mechanics. Entropy 2017, 19, 518. [Google Scholar] [CrossRef]
- Noda, T. Symplectic structures on statistical manifolds. J. Aust. Math. Soc. 2011, 90, 371–384. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y. Completely integrable gradient systems on the manifolds of Gaussian and multinomial distributions. Jpn. J. Ind. Appl. Math. 1993, 10, 179. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Jaynes, E.T. Probability Theory: The Logic of Science; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Brot, R. Phase Transitions. In Statistical Physics. Phase Transitions and Superfluidity; Brandeis University Summer Institute in Theoretical Physics, Gordon and Breach Science Publishers: London, UK, 1966; pp. 5–103. [Google Scholar]
- Favretti, M. Lagrangian submanifolds generated by the Maximum Entropy principle. Entropy 2005, 7, 1–14. [Google Scholar] [CrossRef]
- Fujiwara, A.; Shigeru, S. Hereditary structure in Hamiltonians: Information geometry of Ising spin chains. Phys. Lett. A 2010, 374, 911–916. [Google Scholar] [CrossRef]
- Maslov, V.P.; Bouslaev, V.C.; Arnol’d, V.I. Theorie des Perturbations et Methodes Asymptotiques; Dunod: Paris, France, 1972. [Google Scholar]
- Hormander, L. Fourier integral operators. I. Acta Math. 1971, 127, 79. [Google Scholar] [CrossRef]
- Weinstein, A. Lectures on Symplectic Manifolds; No. 29.; American Mathematical Soc.: Providence, RI, USA, 1977. [Google Scholar]
- Cardin, F. Elementary Symplectic Topology and Mechanics; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Favretti, M. Isotropic submanifolds generated by the Maximum Entropy Principle and Onsager reciprocity relations. J. Funct. Anal. 2005, 227, 227–243. [Google Scholar] [CrossRef]
- Bertsekas, D.P. Constrained Optimization and Lagrange Multiplier Methods; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favretti, M. Lagrangian Submanifolds of Symplectic Structures Induced by Divergence Functions. Entropy 2020, 22, 983. https://doi.org/10.3390/e22090983
Favretti M. Lagrangian Submanifolds of Symplectic Structures Induced by Divergence Functions. Entropy. 2020; 22(9):983. https://doi.org/10.3390/e22090983
Chicago/Turabian StyleFavretti, Marco. 2020. "Lagrangian Submanifolds of Symplectic Structures Induced by Divergence Functions" Entropy 22, no. 9: 983. https://doi.org/10.3390/e22090983
APA StyleFavretti, M. (2020). Lagrangian Submanifolds of Symplectic Structures Induced by Divergence Functions. Entropy, 22(9), 983. https://doi.org/10.3390/e22090983