Partial Derivative Approach to the Integral Transform for the Function Space in the Banach Algebra
Abstract
:1. Introduction
2. Preliminaries
3. Results (1). On
4. Results (2). on
5. Conclusions
Funding
Conflicts of Interest
References
- Cameron, R.H. The first variation of an indefinite Wiener integral. Proc. Am. Soc. 1951, 2, 914–924. [Google Scholar] [CrossRef]
- Cameron, R.H. The translation pathology of Wiener space. Duke Math. J. 1954, 21, 623–628. [Google Scholar] [CrossRef]
- Cameron, R.H.; Martin, W.T. On transformations of Wiener integrals under translations. Ann. Math. 1944, 45, 386–396. [Google Scholar] [CrossRef]
- Cameron, R.H.; Martin, W.T. Transformations for Wiener integrals under a general class of linear transformations. Trans. Am. Math. Soc. 1945, 58, 184–219. [Google Scholar] [CrossRef] [Green Version]
- Cameron, R.H.; Storvick, D.A. An L2-analytic Fourier Feynman transforms. Mich. Math. J. 1976, 23, 1–30. [Google Scholar]
- Huffman, T.; Park, C.; Skoug, D. Analytic Fourier Feynman transforms and convolution. Trans. Am. Math. Soc. 1995, 347, 661–673. [Google Scholar] [CrossRef]
- Huffman, T.; Park, C.; Skoug, D. Convolution and Fourier Feynman transforms of functions involving multiple integrals. Mich. Math. J. 1996, 43, 247–261. [Google Scholar]
- Huffman, T.; Park, C.; Skoug, D. Convolution and Fourier Feynman transforms. Rocky Mt. J. Math. 1997, 27, 827–841. [Google Scholar] [CrossRef]
- Johnson, G.W.; Skoug, D.L. An Lp-analytic Fourier Feynman transforms. Mich. Math. J. 1979, 26, 103–127. [Google Scholar]
- Cameron, R.H.; Martin, W.T. The behavior of measure and measurability under change of scale in Wiener space. Bull. Am. Math. Soc. 1947, 53, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Cameron, R.H.; Storvick, D.A. Change of scale formulas for Wiener integral. Suppl. Rendicoti Circ. Mat. Palermo Ser. II—Numero 1987, 17, 105–115. [Google Scholar]
- Cameron, R.H.; Storvick, D.A. Relationships between the Wiener integral and the analytic Feynman integral. Suppl. Rendicoti Circ. Mat. Palermo Ser. II—Numero 1988, 17, 117–133. [Google Scholar]
- Kim, Y.S. Relationships between Fourier Feynman transforms and Wiener integrals on abstract Wiener spaces. Integral Transform. Spec. Funct. 2001, 12, 323–332. [Google Scholar] [CrossRef]
- Kim, Y.S. Behavior of a scale factor for Wiener integrals and a Fourier Stieltjes transform on the Wiener space. Appl. Math. 2018, 9, 488–495. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S. Relationships between Fourier Feynman transforms and Wiener integrals on abstract Wiener spaces II. Integral Transform. Spec. Funct. 2005, 16, 57–64. [Google Scholar] [CrossRef]
- Kim, Y.S. Behavior of the first variation of a measure on the Fourier Feynman Transform and Convolution. Numer. Funct. Anal. Optim. 2016, 37, 699–718. [Google Scholar] [CrossRef]
- Kim, Y.S. The behavior of the first variation under the Fourier Feynman transform on abstract Wiener spaces. J. Fourier Anal. Appl. 2006, 12, 233–242. [Google Scholar] [CrossRef]
- Kim, Y.S. Fourier Feynman Transform and analytic Feynman integrals and convolutions of a Fourier transform μ of a measure on Wiener spaces. Houst. J. Math. 2010, 36, 1139–1158. [Google Scholar]
- Cameron, R.H.; Storvick, D.A. Some Banach algebras of analytic Feynman integrable functionals, an analytic functions. Lect. Notes Math. 1980, 798, 18–27. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young Sik, K. Partial Derivative Approach to the Integral Transform for the Function Space in the Banach Algebra. Entropy 2020, 22, 1047. https://doi.org/10.3390/e22091047
Young Sik K. Partial Derivative Approach to the Integral Transform for the Function Space in the Banach Algebra. Entropy. 2020; 22(9):1047. https://doi.org/10.3390/e22091047
Chicago/Turabian StyleYoung Sik, Kim. 2020. "Partial Derivative Approach to the Integral Transform for the Function Space in the Banach Algebra" Entropy 22, no. 9: 1047. https://doi.org/10.3390/e22091047
APA StyleYoung Sik, K. (2020). Partial Derivative Approach to the Integral Transform for the Function Space in the Banach Algebra. Entropy, 22(9), 1047. https://doi.org/10.3390/e22091047