Partial Derivative Approach to the Integral Transform for the Function Space in the Banach Algebra
Abstract
1. Introduction
2. Preliminaries
3. Results (1). On
4. Results (2). on
5. Conclusions
Funding
Conflicts of Interest
References
- Cameron, R.H. The first variation of an indefinite Wiener integral. Proc. Am. Soc. 1951, 2, 914–924. [Google Scholar] [CrossRef]
- Cameron, R.H. The translation pathology of Wiener space. Duke Math. J. 1954, 21, 623–628. [Google Scholar] [CrossRef]
- Cameron, R.H.; Martin, W.T. On transformations of Wiener integrals under translations. Ann. Math. 1944, 45, 386–396. [Google Scholar] [CrossRef]
- Cameron, R.H.; Martin, W.T. Transformations for Wiener integrals under a general class of linear transformations. Trans. Am. Math. Soc. 1945, 58, 184–219. [Google Scholar] [CrossRef]
- Cameron, R.H.; Storvick, D.A. An L2-analytic Fourier Feynman transforms. Mich. Math. J. 1976, 23, 1–30. [Google Scholar]
- Huffman, T.; Park, C.; Skoug, D. Analytic Fourier Feynman transforms and convolution. Trans. Am. Math. Soc. 1995, 347, 661–673. [Google Scholar] [CrossRef]
- Huffman, T.; Park, C.; Skoug, D. Convolution and Fourier Feynman transforms of functions involving multiple integrals. Mich. Math. J. 1996, 43, 247–261. [Google Scholar]
- Huffman, T.; Park, C.; Skoug, D. Convolution and Fourier Feynman transforms. Rocky Mt. J. Math. 1997, 27, 827–841. [Google Scholar] [CrossRef]
- Johnson, G.W.; Skoug, D.L. An Lp-analytic Fourier Feynman transforms. Mich. Math. J. 1979, 26, 103–127. [Google Scholar]
- Cameron, R.H.; Martin, W.T. The behavior of measure and measurability under change of scale in Wiener space. Bull. Am. Math. Soc. 1947, 53, 130–137. [Google Scholar] [CrossRef]
- Cameron, R.H.; Storvick, D.A. Change of scale formulas for Wiener integral. Suppl. Rendicoti Circ. Mat. Palermo Ser. II—Numero 1987, 17, 105–115. [Google Scholar]
- Cameron, R.H.; Storvick, D.A. Relationships between the Wiener integral and the analytic Feynman integral. Suppl. Rendicoti Circ. Mat. Palermo Ser. II—Numero 1988, 17, 117–133. [Google Scholar]
- Kim, Y.S. Relationships between Fourier Feynman transforms and Wiener integrals on abstract Wiener spaces. Integral Transform. Spec. Funct. 2001, 12, 323–332. [Google Scholar] [CrossRef]
- Kim, Y.S. Behavior of a scale factor for Wiener integrals and a Fourier Stieltjes transform on the Wiener space. Appl. Math. 2018, 9, 488–495. [Google Scholar] [CrossRef][Green Version]
- Kim, Y.S. Relationships between Fourier Feynman transforms and Wiener integrals on abstract Wiener spaces II. Integral Transform. Spec. Funct. 2005, 16, 57–64. [Google Scholar] [CrossRef]
- Kim, Y.S. Behavior of the first variation of a measure on the Fourier Feynman Transform and Convolution. Numer. Funct. Anal. Optim. 2016, 37, 699–718. [Google Scholar] [CrossRef]
- Kim, Y.S. The behavior of the first variation under the Fourier Feynman transform on abstract Wiener spaces. J. Fourier Anal. Appl. 2006, 12, 233–242. [Google Scholar] [CrossRef]
- Kim, Y.S. Fourier Feynman Transform and analytic Feynman integrals and convolutions of a Fourier transform μ of a measure on Wiener spaces. Houst. J. Math. 2010, 36, 1139–1158. [Google Scholar]
- Cameron, R.H.; Storvick, D.A. Some Banach algebras of analytic Feynman integrable functionals, an analytic functions. Lect. Notes Math. 1980, 798, 18–27. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young Sik, K. Partial Derivative Approach to the Integral Transform for the Function Space in the Banach Algebra. Entropy 2020, 22, 1047. https://doi.org/10.3390/e22091047
Young Sik K. Partial Derivative Approach to the Integral Transform for the Function Space in the Banach Algebra. Entropy. 2020; 22(9):1047. https://doi.org/10.3390/e22091047
Chicago/Turabian StyleYoung Sik, Kim. 2020. "Partial Derivative Approach to the Integral Transform for the Function Space in the Banach Algebra" Entropy 22, no. 9: 1047. https://doi.org/10.3390/e22091047
APA StyleYoung Sik, K. (2020). Partial Derivative Approach to the Integral Transform for the Function Space in the Banach Algebra. Entropy, 22(9), 1047. https://doi.org/10.3390/e22091047