Performance Improvement of Discretely Modulated Continuous-Variable Quantum Key Distribution with Untrusted Source via Heralded Hybrid Linear Amplifier
Abstract
:1. Introduction
2. Discretely Modulated CVQKD with Untested Source via Hybrid Amplifier
2.1. Deploying a Four-State Discrete Modulation at Alice Side
2.2. Eve Producing the Untrusted Entanglement Source
2.3. Implementing a Hybrid Linear Amplifier at Bob Side
3. Simulation of the Secret Key Rate
3.1. The Gaussian Modulation with Untested Source via Hybrid Amplifier Scheme
3.2. The Discrete Modulation with Untested Source via Hybrid Amplifier Scheme
4. Performance Analysis and Results Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brassard, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, 9–12 December 1984; pp. 175–179. [Google Scholar]
- Gisin, N.; Grégoire, R.; Tittel, W. Quantum Cryptography. Rev. Mod. Phys. 2002, 74, 154–195. [Google Scholar] [CrossRef] [Green Version]
- Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature 1982, 299, 802–803. [Google Scholar] [CrossRef]
- Bang, J.Y.; Berger, M.S. Quantum Mechanics and the Generalized Uncertainty Principle. Phys. Rev. 2006, 74, 125012. [Google Scholar] [CrossRef] [Green Version]
- Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.; Dušek, M.; Lütkenhaus, N.; Peev, M. The Security of Practical Quantum Key Distribution. Rev. Mod. Phys. 2009, 81, 1301. [Google Scholar] [CrossRef] [Green Version]
- Pirandola, S.; Ottaviani, C.; Spedalieri, G. High-rate measurement-device-independent quantum cryptography. Nat. Photonics 2015, 9, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.C.; Sun, S.H.; Jiang, M.S. Gaussian-modulated coherent-state measurement-device-independent quantum key distribution. Phys. Rev. A 2013, 89, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Lance, A.M.; Symul, T.; Sharma, V. No-Switching Quantum Key Distribution using Broadband Modulated Coherent Light. Phys. Rev. Lett. 2005, 95, 0503. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Fang, J.; Zeng, G. State-discrimination attack on discretely modulated continuous-variable quantum key distribution. Phys. Rev. A 2014, 89, 2330. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, J.; He, G. Improving the performance of the four-state continuous-variable quantum key distribution by using optical amplifiers. Phys. Rev. A 2012, 86, 022338. [Google Scholar] [CrossRef] [Green Version]
- Leverrier, A.; Grangier, P. Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation. Phys. Rev. A 2011, 83, 2312. [Google Scholar] [CrossRef] [Green Version]
- Leverrier, A.; Grangier, P. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 2009, 102, 0504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.F.; Qi, B.; Zhao, Y.; Lo, H.K. Practical Decoy State for Quantum Key Distribution. Phys. Rev. A 2005, 72, 012326. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Qi, B.; Ma, X.F.; Lo, H.K.; Qian, L. Experimental Quantum Key Distribution with Decoy States. Phys. Rev. Lett. 2006, 96, 070502. [Google Scholar] [CrossRef] [Green Version]
- Weedbrook, C. Continuous-Variable Quantum Key Distribution with Entanglement in the Middle. Phys. Rev. A 2012, 87, 1110–1116. [Google Scholar] [CrossRef] [Green Version]
- Leverrier, A.; Grangier, P. Erratum: Unconditional Security Proof of Long-Distance Continuous-Variable Quantum Key Distribution with Discrete Modulation. Phys. Rev. Lett. 2011, 106, 259902. [Google Scholar] [CrossRef]
- Rémi, B.; Leverrier, A.; Barbieri, M. Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier. Phys. Rev. A 2012, 86, 2327. [Google Scholar]
- Wang, T.; Song, T. Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier. Phys. Lett. A. 2014, 378, 2808–2812. [Google Scholar] [CrossRef]
- Weedbrook, C.; Lance, A.M.; Bowen, W.P. Quantum cryptography without switching. Phys. Rev. Lett. 2004, 93, 0504. [Google Scholar] [CrossRef] [Green Version]
- Weedbrook, C.; Lance, A.M.; Bowen, W.P. Coherent state quantum key distribution without random basis switching. Phys. Rev. A 2006, 73, 2316. [Google Scholar] [CrossRef] [Green Version]
- García-Patrón, R.; Cerf, N.J. Continuous-variable quantum key distribution protocols over noisy channels. Phys. Rev. Lett. 2009, 102, 0501. [Google Scholar] [CrossRef] [Green Version]
- Qi, B.; Zhao, Y.; Ma, X.F.; Lo, H.K.; Qian, L. Dual detectors scheme in practical quantum key distribution systems. Phys. Rev. A 2007, 75, 2304. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Haw, J.Y.; Symul, T. Characterization of a measurement-based noiseless linear amplifier and its applications. Phys. Rev. A 2017, 96, 2319. [Google Scholar] [CrossRef]
- Jie, Z.; Josephine, D.; Yan, H.J. Quantum enhancement of signal-to-noise ratio with a heralded linear amplifier. Optica 2017, 4, 1421. [Google Scholar]
- Haw, J.Y.; Zhao, J.; Dias, J. Surpassing the no-cloning limit with a heralded hybrid linear amplifier for coherent states. Nat. Commun. 2016, 7, 13222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takada, A.; Imajuku, W. Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier. Electron. Lett. 1996, 32, 677–679. [Google Scholar] [CrossRef]
- Yoshikawa, J.I.; Miwa, Y.; Filip, R. Demonstration of reversible phase-insensitive optical amplifier. Phys. Rev. A 2011, 83, 4861–4865. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.R.; Wittmann, C.; Marek, P.; Filip, R.; Marquardt, C.; Leuchs, G.; Andersen, U.L. Probabilistic cloning of coherent states without a phase reference. Phys. Rev. A 2011, 86, 18515–18524. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.C.; Li, Z.; Weedbrook, C. Improvement of two-way continuous-variable quantum key distribution using optical amplifiers. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 5501. [Google Scholar] [CrossRef] [Green Version]
- Ralph, T.C.; Lund, P.A. Nondeterministic Noiseless linear amplification of quantum systems. Am. Inst. Phys. Conf. 2009, 1110, 155–160. [Google Scholar]
- Shannon, C.E.; Syst, B. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, K.; Wu, X.; Mao, Y.; Chen, Z.; Liao, Q.; Guo, Y. Performance Improvement of Discretely Modulated Continuous-Variable Quantum Key Distribution with Untrusted Source via Heralded Hybrid Linear Amplifier. Entropy 2020, 22, 882. https://doi.org/10.3390/e22080882
Zhou K, Wu X, Mao Y, Chen Z, Liao Q, Guo Y. Performance Improvement of Discretely Modulated Continuous-Variable Quantum Key Distribution with Untrusted Source via Heralded Hybrid Linear Amplifier. Entropy. 2020; 22(8):882. https://doi.org/10.3390/e22080882
Chicago/Turabian StyleZhou, Kunlin, Xuelin Wu, Yun Mao, Zhiya Chen, Qin Liao, and Ying Guo. 2020. "Performance Improvement of Discretely Modulated Continuous-Variable Quantum Key Distribution with Untrusted Source via Heralded Hybrid Linear Amplifier" Entropy 22, no. 8: 882. https://doi.org/10.3390/e22080882
APA StyleZhou, K., Wu, X., Mao, Y., Chen, Z., Liao, Q., & Guo, Y. (2020). Performance Improvement of Discretely Modulated Continuous-Variable Quantum Key Distribution with Untrusted Source via Heralded Hybrid Linear Amplifier. Entropy, 22(8), 882. https://doi.org/10.3390/e22080882