Testing the Steady-State Fluctuation Relation in the Solar Photospheric Convection
Abstract
1. Introduction
2. Dataset and Methods
3. Data Analysis and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NESS | Non Equlibrium Stationary States |
FR | Fluctuation Relation |
GCFR | Gallavotti–Cohen Fluctuation Relation |
LoS | Line-of-Sight |
NSO | National Solar Observatory |
DST | Dunn Solar Telescope |
IBIS | Interferometric BIdimensional Spectropolarimeter |
FoV | Field-of-View |
CoG | Center of Gravity |
PDFs | Probability Density Functions |
References
- Groot, S.R.D.; Mazur, P. Non-Equilibrium Thermodynamics; Dover Publications, Inc.: New York, NY, USA, 1984. [Google Scholar]
- Gallavotti, G. Nonequilibrium and Irreversibility; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Gallavotti, G.; Cohen, E.G.D. Dynamical Ensembles in Nonequilibrium Statistical Mechanics. Phys. Rev. Lett. 1995, 74, 2694–2697. [Google Scholar] [CrossRef] [PubMed]
- Gallavotti, G.; Cohen, E.G.D. Dynamical ensembles in stationary states. J. Stat. Phys. 1995, 80, 931–970. [Google Scholar] [CrossRef]
- Lebowitz, J.L.; Spohn, H. A Gallavotti-Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics. J. Stat. Phys. 1999, 95, 333–365. [Google Scholar] [CrossRef]
- Bonetto, F.; Gallavotti, G. Reversibility, Coarse Graining and the Chaoticity Principle. Commun. Math. Phys. 1997, 189, 263–275. [Google Scholar] [CrossRef]
- Gallavotti, G. Breakdown and regeneration of time reversal symmetry in nonequilibrium statistical mechanics. Phys. D Nonlinear Phenom. 1998, 112, 250–257. [Google Scholar] [CrossRef]
- Gallavotti, G. Nonequilibrium and Fluctuation Relation. J. Stat. Phys. 2019. [Google Scholar] [CrossRef]
- Gallavotti, G. Ensembles, turbulence and fluctuation theorem. Eur. Phys. J. E 2020, 43, 37. [Google Scholar] [CrossRef]
- Ciliberto, S.; Garnier, N.; Hernandez, S.; Lacpatia, C.; Pinton, J.F.; Ruiz Chavarria, G. Experimental test of the Gallavotti-Cohen fluctuation theorem in turbulent flows. Phys. A Stat. Mech. Its Appl. 2004, 340, 240–250. [Google Scholar] [CrossRef][Green Version]
- Gallavotti, G. A local fluctuation theorem. Phys. A Stat. Mech. Its Appl. 1999, 263, 39–50. [Google Scholar] [CrossRef]
- Evans, D.J.; Searles, D.J. The Fluctuation Theorem. Adv. Phys. 2002, 51, 1529–1585. [Google Scholar] [CrossRef]
- Shang, X.D.; Tong, P.; Xia, K.Q. Test of steady-state fluctuation theorem in turbulent Rayleigh-Bénard convection. Phys. Rev. E 2005, 72, 015301. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, P.I.; Pérez-Espigares, C.; del Pozo, J.J.; Garrido, P.L. Symmetries in fluctuations far from equilibrium. Proc. Natl. Acad. Sci. USA 2011, 108, 7704–7709. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, M.L.; Toomre, J. Correlation Tracking of Mesogranules from SOI-MDI Doppler Images to Reveal Supergranular Flow Fields. In Structure and Dynamics of the Interior of the Sun and Sun-Like Stars; Korzennik, S., Ed.; ESA Special Publication: Noordwijk, The Netherlands, 1998; Volume 418, p. 753. [Google Scholar]
- Roudier, T.; Rieutord, M.; Malherbe, J.M.; Vigneau, J. Determination of horizontal velocity fields at the sun’s surface with high spatial and temporal resolution. Astron. Astrophys. 1999, 349, 301–311. [Google Scholar]
- Cattaneo, F.; Lenz, D.; Weiss, N. On the Origin of the Solar Mesogranulation. Astrophys. J. Lett. 2001, 563, L91–L94. [Google Scholar] [CrossRef]
- Rast, M.P. The Scales of Granulation, Mesogranulation, and Supergranulation. Astrophys. J. 2003, 597, 1200–1210. [Google Scholar] [CrossRef]
- De Rosa, M.L.; Toomre, J. Evolution of Solar Supergranulation. Astrophys. J. 2004, 616, 1242–1260. [Google Scholar] [CrossRef]
- Del Moro, D.; Berrilli, F.; Duvall, T.L.; Kosovichev, A.G. Dynamics and Structure of Supergranulation. Sol. Phys. 2004, 221, 23–32. [Google Scholar] [CrossRef]
- Berrilli, F.; Scardigli, S.; Giordano, S. Multiscale Magnetic Underdense Regions on the Solar Surface: Granular and Mesogranular Scales. Sol. Phys. 2013, 282, 379–387. [Google Scholar] [CrossRef]
- Giannattasio, F.; Berrilli, F.; Biferale, L.; Del Moro, D.; Sbragaglia, M.; Bellot Rubio, L.; Gošić, M.; Orozco Suárez, D. Pair separation of magnetic elements in the quiet Sun. Astron. Astrophys. 2014, 569, A121. [Google Scholar] [CrossRef]
- Giannattasio, F.; Stangalini, M.; Berrilli, F.; Del Moro, D.; Bellot Rubio, L. Diffusion of Magnetic Elements in a Supergranular Cell. Astrophys. J. 2014, 788, 137. [Google Scholar] [CrossRef]
- Berrilli, F.; Scardigli, S.; Del Moro, D. Magnetic pattern at supergranulation scale: The void size distribution. Astron. Astrophys. 2014, 568, A102. [Google Scholar] [CrossRef]
- Caroli, A.; Giannattasio, F.; Fanfoni, M.; Del Moro, D.; Consolini, G.; Berrilli, F. Turbulent convective flows in the solar photospheric plasma. J. Plasma Phys. 2015, 81, 495810514. [Google Scholar] [CrossRef]
- Giovannelli, L.; Giannattasio, F.; Del Moro, D.; Caroli, A.; Berrilli, F. Diffusion of emerging bipolar magnetic pairs in solar photosphere. Nuovo C. C Geophys. Space Phys. C 2019, 42, 3. [Google Scholar] [CrossRef]
- Müller, D.A.N.; Steiner, O.; Schlichenmaier, R.; Brandt, P.N. Time-slice diagrams of solar granulation. Sol. Phys. 2001, 203, 211–232. [Google Scholar] [CrossRef]
- Berrilli, F.; Consolini, G.; Pietropaolo, E.; Caccin, B.; Penza, V.; Lepreti, F. 2-D multiline spectroscopy of the solar photosphere. Astron. Astrophys. 2002, 381, 253–264. [Google Scholar] [CrossRef]
- Hirzberger, J. On the brightness and velocity structure of solar granulation. Astron. Astrophys. 2002, 392, 1105–1118. [Google Scholar] [CrossRef]
- Nesis, A.; Hammer, R.; Roth, M.; Schleicher, H. Dynamics of the solar granulation. VIII. Time and space development. Astron. Astrophys. 2002, 396, 1003–1010. [Google Scholar] [CrossRef]
- Roudier, T.; Malherbe, J.M.; Mein, P.; Muller, R.; Coutard, C.; Lafon, M.; Grimaud, F. High spatial resolution capabilities of Doppler measurements with the Pic du Midi MSDP spectrograph. Astron. Astrophys. 2003, 409, 793–797. [Google Scholar] [CrossRef]
- Del Moro, D. Solar granulation properties derived from three different time series. Astron. Astrophys. 2004, 428, 1007–1015. [Google Scholar] [CrossRef]
- Berrilli, F.; Del Moro, D.; Consolini, G.; Pietropaolo, E.; Duvall, T.L.; Kosovichev, A.G. Structure Properties of Supergranulation and Granulation. Sol. Phys. 2004, 221, 33–45. [Google Scholar] [CrossRef]
- Nesis, A.; Hammer, R.; Roth, M.; Schleicher, H. Dynamics of the solar granulation. IX. A global approach. Astron. Astrophys. 2006, 451, 1081–1089. [Google Scholar] [CrossRef]
- November, L.J. Mesogranulation and Supergranulation in the Sun. Ph.D. Thesis, University of Colorado Boulder, Boulder, CO, USA, 1980. [Google Scholar]
- Hart, A.B. Motions in the Sun at the photospheric level. VI. Large-scale motions in the equatorial region. Mon. Not. R. Astron. Soc. 1956, 116, 38. [Google Scholar] [CrossRef]
- Leighton, R.B.; Noyes, R.W.; Simon, G.W. Velocity Fields in the Solar Atmosphere. I. Preliminary Report. Astrophys. J. 1962, 135, 474. [Google Scholar] [CrossRef]
- Simon, G.W.; Leighton, R.B. Velocity Fields in the Solar Atmosphere. III. Large-Scale Motions, the Chromospheric Network, and Magnetic Fields. Astrophys. J. 1964, 140, 1120. [Google Scholar] [CrossRef]
- Stein, R.F.; Nordlund, Å. Simulations of Solar Granulation. I. General Properties. Astrophys. J. 1998, 499, 914–933. [Google Scholar] [CrossRef]
- Nordlund, Å.; Stein, R.F.; Asplund, M. Solar Surface Convection. Living Rev. Sol. Phys. 2009, 6, 2. [Google Scholar] [CrossRef]
- Böhm-Vitense, E. Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Mit 5 Textabbildungen. Z. Astrophys. 1958, 46, 108. [Google Scholar]
- Canuto, V.M.; Mazzitelli, I. Stellar Turbulent Convection: A New Model and Applications. Astrophys. J. 1991, 370, 295. [Google Scholar] [CrossRef]
- Getling, A. Rayleigh-Benard Convection: Structures And Dynamics; World Scientific Publishing Co Pte Ltd.: Singapore, 1998. [Google Scholar]
- Berrilli, F.; Del Moro, D.; Russo, S.; Consolini, G.; Straus, T. Spatial Clustering of Photospheric Structures. Astrophys. J. 2005, 632, 677–683. [Google Scholar] [CrossRef]
- Giannattasio, F.; Del Moro, D.; Berrilli, F.; Bellot Rubio, L.; Gošić, M.; Orozco Suárez, D. Diffusion of Solar Magnetic Elements up to Supergranular Spatial and Temporal Scales. Astrophys. J. 2013, 770, L36. [Google Scholar] [CrossRef]
- Cavallini, F.; Berrilli, F.; Cantarano, S.; Egidi, A. IBIS: A new instrument for solar bidimensional spectroscopy. Mem. Soc. Astron. Ital. 2001, 72, 554–557. [Google Scholar]
- Cavallini, F. IBIS: A New Post-Focus Instrument for Solar Imaging Spectroscopy. Sol. Phys. 2006, 236, 415–439. [Google Scholar] [CrossRef]
- Viticchié, B.; Del Moro, D.; Berrilli, F.; Bellot Rubio, L.; Tritschler, A. Imaging Spectropolarimetry with IBIS: Evolution of Bright Points in the Quiet Sun. Astrophys. J. Lett. 2009, 700, L145–L148. [Google Scholar] [CrossRef]
- Del Moro, D.; Giannattasio, F.; Berrilli, F.; Consolini, G.; Lepreti, F.; Gošić, M. Super-diffusion versus competitive advection: A simulation. Astron. Astrophys. 2015, 576, A47. [Google Scholar] [CrossRef]
- Viavattene, G.; Berrilli, F.; Collados Vera, M.; Del Moro, D.; Giovannelli, L.; Ruiz Cobo, B.; Zuccarello, F. Remote sensing of the solar photosphere: A tale of two methods. J. Phys. Conf. Ser. 2018, 956, 012006. [Google Scholar] [CrossRef]
- Del Moro, D.; Giovannelli, L.; Pietropaolo, E.; Berrilli, F. JP3D compression of solar data-cubes: Photospheric imaging and spectropolarimetry. Exp. Astron. 2017, 43, 23–37. [Google Scholar] [CrossRef]
- Viticchié, B.; Del Moro, D.; Criscuoli, S.; Berrilli, F. Imaging Spectropolarimetry with IBIS. II. On the Fine Structure of G-band Bright Features. Astrophys. J. 2010, 723, 787–796. [Google Scholar] [CrossRef]
- Cattaneo, F.; Emonet, T.; Weiss, N. On the Interaction between Convection and Magnetic Fields. Astrophys. J. 2003, 588, 1183–1198. [Google Scholar] [CrossRef]
- Rees, D.E.; Semel, M.D. Line formation in an unresolved magnetic element—A test of the centre of gravity method. Astron. Astrophys. 1979, 74, 1–5. [Google Scholar]
- Viavattene, G.; Berrilli, F.; Consolini, G.; Del Moro, D.; Giannattasio, F.; Giovannelli, L.; Penza, V. Evaluating a proxy of the local entropy production rate on the solar photosphere. J. Phys. Conf. Ser. 2019, 1226, 012004. [Google Scholar] [CrossRef]
- Viavattene, G.; Berrilli, F.; Consolini, G.; Del Moro, D.; Giannattasio, F.; Giovannelli, L.; Penza, V. Statistical behaviour of a proxy of the entropy production rate of the solar photosphere. Nuovo C. C Geophys. Space Phys. C 2019, 42, 8. [Google Scholar] [CrossRef]
- Rodriguez Hidalgo, I.; Collados, M.; Vazquez, M. Centre-to-limb variation of solar granulation along the equator and the central meridian. Astron. Astrophys. 1992, 264, 661–672. [Google Scholar]
- Caccin, B.; Penza, V. Line-Depth and Teff Variations with the Solar Cycle due to Possible Size-Changes of Photospheric Granulation. In The Solar Cycle and Terrestrial Climate, Solar and Space Weather; Wilson, A., Ed.; ESA Special Publication: Noordwijk, The Netherlands, 2000; Volume 463, p. 293. [Google Scholar]
- Judge, P.G.; Kleint, L.; Uitenbroek, H.; Rempel, M.; Suematsu, Y.; Tsuneta, S. Photon Mean Free Paths, Scattering, and Ever-Increasing Telescope Resolution. Sol. Phys. 2015, 290, 979–996. [Google Scholar] [CrossRef]
- Caccin, B.; Gomez, M.T.; Marmolino, C.; Severino, G. Response functions and contribution functions of photospheric lines. Astron. Astrophys. 1977, 54, 227–231. [Google Scholar]
- Penza, V.; Caccin, B.; Del Moro, D. The sensitivity of the C I 538.0 nm Fe I 537.9 nm and Ti II 538.1 nm lines to solar active regions. Astron. Astrophys. 2004, 427, 345–351. [Google Scholar] [CrossRef]
- Penza, V.; Caccin, B.; Ermolli, I.; Centrone, M. Comparison of model calculations and photometric observations of bright “magnetic” regions. Astron. Astrophys. 2004, 413, 1115–1123. [Google Scholar] [CrossRef]
- Cristaldi, A.; Ermolli, I. 1D Atmosphere Models from Inversion of Fe I 630 nm Observations with an Application to Solar Irradiance Studies. Astrophys. J. 2017, 841, 115. [Google Scholar] [CrossRef]
- Ruiz Cobo, B.; del Toro Iniesta, J.C. Inversion of Stokes Profiles. Astrophys. J. 1992, 398, 375. [Google Scholar] [CrossRef]
- Kurucz, R.L. Model atmospheres for g, f, a, b, and o stars. Astrophys. J. Suppl. Ser. 1979, 40, 1–340. [Google Scholar] [CrossRef]
- Title, A.M.; Tarbell, T.D.; Topka, K.P.; Ferguson, S.H.; Shine, R.A.; SOUP Team. Statistical properties of solar granulation derived from the SOUP instrument on Spacelab 2. Astrophys. J. 1989, 336, 475–494. [Google Scholar] [CrossRef]
- Shang, X.D.; Qiu, X.L.; Tong, P.; Xia, K.Q. Measured Local Heat Transport in Turbulent Rayleigh-Bénard Convection. Phys. Rev. Lett. 2003, 90, 074501. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.D.; Qiu, X.L.; Tong, P.; Xia, K.Q. Measurements of the local convective heat flux in turbulent Rayleigh-Bénard convection. Phys. Rev. E 2004, 70, 026308. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, A.; Schreiber, T. Information transfer in continuous processes. Phys. D Nonlinear Phenom. 2002, 166, 43–62. [Google Scholar] [CrossRef]
- Kippenhan, R.; Weigert, A. Stellar Structure and Evolution; Springer: Heidelberg, Germany, 1994. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viavattene, G.; Consolini, G.; Giovannelli, L.; Berrilli, F.; Del Moro, D.; Giannattasio, F.; Penza, V.; Calchetti, D. Testing the Steady-State Fluctuation Relation in the Solar Photospheric Convection. Entropy 2020, 22, 716. https://doi.org/10.3390/e22070716
Viavattene G, Consolini G, Giovannelli L, Berrilli F, Del Moro D, Giannattasio F, Penza V, Calchetti D. Testing the Steady-State Fluctuation Relation in the Solar Photospheric Convection. Entropy. 2020; 22(7):716. https://doi.org/10.3390/e22070716
Chicago/Turabian StyleViavattene, Giorgio, Giuseppe Consolini, Luca Giovannelli, Francesco Berrilli, Dario Del Moro, Fabio Giannattasio, Valentina Penza, and Daniele Calchetti. 2020. "Testing the Steady-State Fluctuation Relation in the Solar Photospheric Convection" Entropy 22, no. 7: 716. https://doi.org/10.3390/e22070716
APA StyleViavattene, G., Consolini, G., Giovannelli, L., Berrilli, F., Del Moro, D., Giannattasio, F., Penza, V., & Calchetti, D. (2020). Testing the Steady-State Fluctuation Relation in the Solar Photospheric Convection. Entropy, 22(7), 716. https://doi.org/10.3390/e22070716