Bounds on the Transmit Power of b-Modulated NFDM Systems in Anomalous Dispersion Fiber
Abstract
1. Introduction
Notation
2. Review of NFDM
2.1. Nonlinear Fourier Transform for Vanishing Signals
2.2. NFDM Signal Generation
3. Upper Bounds on the Transmit Power of b-Modulators
3.1. Power Bound for a Fixed Gap to Singularity
3.2. Uniform Power Bound for Arbitrary Gaps to Singularity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| NFT | Nonlinear Fourier Transform |
| NFDM | Nonlinear Frequency Division Multiplexing |
References
- Zakharov, V.; Shabat, A. Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in Nonlinear Media. Sov. Phys. JETP 1972, 34, 62. [Google Scholar]
- Agrawal, G.P. Chapter 5-Optical Solitons. In Nonlinear Fiber Optics, 5th ed.; Agrawal, G., Ed.; Optics and Photonics; Academic Press: Boston, MA, USA, 2013; pp. 129–191. [Google Scholar]
- Bajaj, V.; Chimmalgi, S.; Aref, V.; Wahls, S. Exact NFDM Transmission in the Presence of Fiber-Loss. J. Light. Technol. 2020, 38, 3051–3058. [Google Scholar] [CrossRef]
- Yousefi, M.I.; Kschischang, F.R. Information Transmission Using the Nonlinear Fourier Transform, Part I: Mathematical Tools. IEEE Trans. Inf. Theory 2014, 60, 4312–4328. [Google Scholar] [CrossRef]
- Prilepsky, J.E.; Derevyanko, S.A.; Blow, K.J.; Gabitov, I.; Turitsyn, S.K. Nonlinear Inverse Synthesis and Eigenvalue Division Multiplexing in Optical Fiber Channels. Phys. Rev. Lett. 2014, 113, 013901. [Google Scholar] [CrossRef] [PubMed]
- Turitsyn, S.K.; Prilepsky, J.E.; Le, S.T.; Wahls, S.; Frumin, L.L.; Kamalian, M.; Derevyanko, S.A. Nonlinear Fourier Transform for Optical Data Processing and Transmission: Advances and Perspectives. Optica 2017, 4, 307–322. [Google Scholar] [CrossRef]
- Le, S.; Aref, V.; Buelow, H. Nonlinear Signal Multiplexing for Communication Beyond the Kerr Nonlinearity Limit. Nat. Photonics 2017, 11. [Google Scholar] [CrossRef]
- Gaiarin, S.; Perego, A.M.; da Silva, E.P.; Ros, F.D.; Zibar, D. Dual-polarization Nonlinear Fourier Transform-based Optical Communication System. Optica 2018, 5, 263–270. [Google Scholar] [CrossRef]
- Goossens, J.W.; Yousefi, M.I.; Jaouën, Y.; Hafermann, H. Polarization-division Multiplexing Based on the Nonlinear Fourier transform. Opt. Express 2017, 25, 26437–26452. [Google Scholar] [CrossRef]
- Le, S.T.; Aref, V.; Buelow, H. High Speed Precompensated Nonlinear Frequency-Division Multiplexed Transmissions. J. Light. Technol. 2018, 36, 1296–1303. [Google Scholar] [CrossRef]
- Le, S.T.; Buelow, H. High Performance NFDM Transmission with b-modulation. In Proceedings of the 19th ITG-Symposium, Photonic Networks, Leipzig, Germany, 11–12 June 2018; pp. 1–6. [Google Scholar]
- Yangzhang, X.; Le, S.T.; Aref, V.; Buelow, H.; Lavery, D.; Bayvel, P. Experimental Demonstration of Dual-Polarization NFDM Transmission With b-Modulation. IEEE Photonics Technol. Lett. 2019, 31, 885–888. [Google Scholar] [CrossRef]
- Yu, R.; Zheng, Z.; Zhang, X.; Du, S.; Xi, L.; Zhang, X. Hybrid Probabilistic-Geometric Shaping in DP-NFDM Systems. In Proceedings of the 2019 18th International Conference on Optical Communications and Networks (ICOCN), Huangshan, China, 5–8 August 2019; pp. 1–3. [Google Scholar]
- Aref, V.; Le, S.T.; Buelow, H. Modulation Over Nonlinear Fourier Spectrum: Continuous and Discrete Spectrum. J. Light. Technol. 2018, 36, 1289–1295. [Google Scholar] [CrossRef]
- Da Ros, F.; Civelli, S.; Gaiarin, S.; da Silva, E.P.; De Renzis, N.; Secondini, M.; Zibar, D. Dual-Polarization NFDM Transmission With Continuous and Discrete Spectral Modulation. J. Light. Technol. 2019, 37, 2335–2343. [Google Scholar] [CrossRef]
- Zhou, G.; Gui, T.; Lu, C.; Lau, A.P.T.; Wai, P.A. Improving Soliton Transmission Systems Through Soliton Interactions. J. Light. Technol. 2019. [Google Scholar] [CrossRef]
- Aref, V.; Le, S.T.; Buelow, H. Does the Cross-Talk Between Nonlinear Modes Limit the Performance of NFDM Systems? In Proceedings of the 2017 European Conference on Optical Communication (ECOC), Gothenburg, Sweden, 17–21 September 2017; pp. 1–3. [Google Scholar]
- Civelli, S.; Forestieri, E.; Secondini, M. Why Noise and Dispersion May Seriously Hamper Nonlinear Frequency-Division Multiplexing. IEEE Photonics Technol. Lett. 2017, 29, 1332–1335. [Google Scholar] [CrossRef]
- Chimmalgi, S.; Wahls, S. Theoretical Analysis of Maximum Transmit Power in a b-Modulator. In Proceedings of the European Conference on Optical Communication, Dublin, Ireland, 22–26 September 2019; pp. 1–3. [Google Scholar]
- Civelli, S.; Forestieri, E.; Secondini, M. Nonlinear Frequency Division Multiplexing: Immune to Nonlinearity but Oversensitive to Noise? In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; pp. 1–3. [Google Scholar]
- Gui, T.; Zhou, G.; Lu, C.; Lau, A.P.T.; Wahls, S. Nonlinear Frequency Division Multiplexing with b-Modulation: Shifting the Energy Barrier. Opt. Express 2018, 26, 27978–27990. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Harvey, S. The Inverse Scattering Transform-Fourier Analysis for Nonlinear Problems. Stud. Appl. Math. 1974, 53, 249–315. [Google Scholar] [CrossRef]
- Faddeev, L.D.; Takhtajan, L. Hamiltonian Methods in the Theory of Solitons; Springer: Berlin/Heidelberger, Germany, 2007. [Google Scholar]
- Zhou, X. Direct and Inverse Scattering Transforms with Arbitrary Spectral Singularities. Commun. Pure Appl. Math. 1989, 42, 895–938. [Google Scholar] [CrossRef]
- Fagerstrom, E. On the Nonlinear Schrodinger Equation with Nonzero Boundary Conditions. Ph.D. Thesis, University of Buffalo, Buffalo, NY, USA, 2015. [Google Scholar]
- Wahls, S. Generation of Time-Limited Signals in the Nonlinear Fourier Domain via b-Modulation. In Proceedings of the 2017 European Conference on Optical Communication (ECOC), Gothenburg, Sweden, 17–21 September 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Gemechu, W.A.; Song, M.; Jaouen, Y.; Wabnitz, S.; Yousefi, M.I. Comparison of the Nonlinear Frequency Division Multiplexing and OFDM in Experiment. In Proceedings of the 2017 European Conference on Optical Communication (ECOC), Gothenburg, Sweden, 17–21 September 2017; pp. 1–3. [Google Scholar]
- Gemechu, W.A.; Gui, T.; Goossens, J.; Song, M.; Wabnitz, S.; Hafermann, H.; Lau, A.P.T.; Yousefi, M.I.; Jaouën, Y. Dual Polarization Nonlinear Frequency Division Multiplexing Transmission. IEEE Photonics Technol. Lett. 2018, 30, 1589–1592. [Google Scholar] [CrossRef]
- Ablowitz, M.; Segur, H. The Inverse Scattering Transform on the Infinite Interval. In Solitons and the Inverse Scattering Transform; SIAM: Philadelphia, PA, USA, 1981. [Google Scholar]
- Wahls, S.; Chimmalgi, S.; Prins, P.J. Wiener-Hopf Method for b-Modulation. In Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; pp. 1–3. [Google Scholar]
- Le, S.T.; Schuh, K.; Buchali, F.; Buelow, H. 100 Gbps b-modulated Nonlinear Frequency Division Multiplexed Transmission. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 1–15 March 2018; pp. 1–3. [Google Scholar]
- Shepelsky, D.; Vasylchenkova, A.; Prilepsky, J.E.; Karpenko, I. Nonlinear Fourier Spectrum Characterization of Time-limited Signals. IEEE Trans. Commun. 2020, 68, 3024–3032. [Google Scholar] [CrossRef]
- Gearhart, W.B.; Shultz, H.S. The Function sin(x)/x. Coll. Math. J. 1990, 21, 90–99. [Google Scholar] [CrossRef]
- Andersen, N.B. Entire Lp-functions of Exponential Type. Expo. Math. 2014, 32, 199–220. [Google Scholar] [CrossRef]
- Duda, K.; Zieliński, T.P.; Barczentewicz, S.H. Perfectly Flat-Top and Equiripple Flat-Top Cosine Windows. IEEE Trans. Instrum. Meas. 2016, 65, 1558–1567. [Google Scholar] [CrossRef]
- Krantz, S.; Parks, H. Chapter “Elementary Properties”. In A Primer of Real Analytic Functions; Birkhäuser Verlag: Basel, Switzerland, 1992. [Google Scholar]





© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chimmalgi, S.; Wahls, S. Bounds on the Transmit Power of b-Modulated NFDM Systems in Anomalous Dispersion Fiber. Entropy 2020, 22, 639. https://doi.org/10.3390/e22060639
Chimmalgi S, Wahls S. Bounds on the Transmit Power of b-Modulated NFDM Systems in Anomalous Dispersion Fiber. Entropy. 2020; 22(6):639. https://doi.org/10.3390/e22060639
Chicago/Turabian StyleChimmalgi, Shrinivas, and Sander Wahls. 2020. "Bounds on the Transmit Power of b-Modulated NFDM Systems in Anomalous Dispersion Fiber" Entropy 22, no. 6: 639. https://doi.org/10.3390/e22060639
APA StyleChimmalgi, S., & Wahls, S. (2020). Bounds on the Transmit Power of b-Modulated NFDM Systems in Anomalous Dispersion Fiber. Entropy, 22(6), 639. https://doi.org/10.3390/e22060639

