# An Overview of Emergent Order in Far-from-Equilibrium Driven Systems: From Kuramoto Oscillators to Rayleigh–Bénard Convection

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Ising Model

#### 1.2. Kuramoto Model

#### 1.3. Rayleigh–Bénard Convection

## 2. Results

## 3. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Nicolis, G. Self-organization in nonequilibrium systems. In Dissipative Structures to Order through Fluctuations; J. Wiley & Sons: New York, NY, USA, 1977; pp. 339–426. [Google Scholar]
- Gyarmati, I. Non-Equilibrium Thermodynamics; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
- Chatterjee, A. Thermodynamics of action and organization in a system. Complexity
**2016**, 21, 307–317. [Google Scholar] [CrossRef] - Cross, M.C.; Hohenberg, P.C. Pattern formation outside of equilibrium. Rev. Mod. Phys.
**1993**, 65, 851. [Google Scholar] [CrossRef] [Green Version] - Heylighen, F. The science of self-organization and adaptivity. Encycl. Life Support Syst.
**2001**, 5, 253–280. [Google Scholar] - Jaeger, H.M.; Liu, A.J. Far-from-equilibrium physics: An overview. arXiv
**2010**, arXiv:1009.4874. [Google Scholar] - Egolf, D.A. Far from equilibrium. Science
**2002**, 296, 1813–1815. [Google Scholar] [CrossRef] - Zhang, D.; Györgyi, L.; Peltier, W.R. Deterministic chaos in the belousov–zhabotinsky reaction: Experiments and simulations. Chaos Interdiscip. J. Nonlinear Sci.
**1993**, 3, 723–745. [Google Scholar] [CrossRef] - Huber, L.; Suzuki, R.; Krüger, T.; Frey, E.; Bausch, A. Emergence of coexisting ordered states in active matter systems. Science
**2018**, 361, 255–258. [Google Scholar] [CrossRef] [Green Version] - Srinivasarao, M.; Iannacchione, G.S.; Parikh, A.N. Biologically inspired far-from-equilibrium materials. MRS Bull.
**2019**, 44, 91–95. [Google Scholar] [CrossRef] [Green Version] - Chatterjee, A.; Georgiev, G.; Iannacchione, G. Aging and efficiency in living systems: Complexity, adaptation and self-organization. Mech. Ageing Dev.
**2017**, 163, 2–7. [Google Scholar] [CrossRef] - Georgiev, G.Y.; Chatterjee, A. The road to a measurable quantitative understanding of self-organization and evolution. In Evolution and Transitions in Complexity; Springer: Berlin/Heidelberg, Germany, 2016; pp. 223–230. [Google Scholar]
- Chatterjee, A. Energy, Entropy and Complexity: Thermodynamic and information-theoretic perspectives on ageing. In M. Kyriazis (2016) Challenging Ageing: The Anti-Senescence Effects of Hormesis, Environmental Enrichment, and Information Exposure. Bentham Science; Bentham Science Publishers: Sharjah, UAE, 2016. [Google Scholar]
- Chatterjee, A.; Manohar, M.; Ramadurai, G. Statistical analysis of bus networks in India. PLoS ONE
**2016**, 11, e0168478. [Google Scholar] [CrossRef] - Chatterjee, A.; Ramadurai, G. Scaling laws in chennai bus network. arXiv
**2015**, arXiv:1508.03504. [Google Scholar] - Chatterjee, A. Studies on the structure and dynamics of urban bus networks in Indian cities. arXiv
**2015**, arXiv:1512.05909. [Google Scholar] - Chatterjee, A.; Ramadurai, G.; Jagannathan, K. Contagion processes on urban bus networks in Indian cities. Complexity
**2016**, 21, 451–458. [Google Scholar] [CrossRef] [Green Version] - Demirel, Y.; Gerbaud, V. Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Chatterjee, A.; Iannacchione, G. The many faces of far-from-equilibrium thermodynamics: Deterministic chaos, randomness, or emergent order? MRS Bull.
**2019**, 44, 130–133. [Google Scholar] [CrossRef] [Green Version] - Chatterjee, A.; Yadati, Y.; Mears, N.; Iannacchione, G. Coexisting ordered states, Local equilibrium-like Domains, and Broken ergodicity in a Non-turbulent Rayleigh–Bénard Convection at steady-state. Sci. Rep.
**2019**, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] - Yadati, Y.; Mears, N.; Chatterjee, A. Spatio-temporal characterization of thermal fluctuations in a non-turbulent Rayleigh–Bénard convection at steady state. Phys. A
**2019**, 547, 123867. [Google Scholar] [CrossRef] [Green Version] - Panaggio, M.J.; Abrams, D.M. Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity
**2015**, 28, R67. [Google Scholar] [CrossRef] - Peierls, R. On Ising’s model of ferromagnetism. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1936; Volume 32, pp. 477–481. [Google Scholar]
- Newman, M.; Barkema, G. Monte Carlo Methods in Statistical Physics Chapter 1–4; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Teif, V.B. General transfer matrix formalism to calculate DNA–protein–drug binding in gene regulation: Application to O R operator of phage λ. Nucleic Acids Res.
**2007**, 35, e80. [Google Scholar] [CrossRef] - Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA
**1982**, 79, 2554–2558. [Google Scholar] [CrossRef] [Green Version] - Shi, Y.; Duke, T. Cooperative model of bacterial sensing. Phys. Rev. E
**1998**, 58, 6399. [Google Scholar] [CrossRef] [Green Version] - Vtyurina, N.N.; Dulin, D.; Docter, M.W.; Meyer, A.S.; Dekker, N.H.; Abbondanzieri, E.A. Hysteresis in DNA compaction by Dps is described by an Ising model. Proc. Natl. Acad. Sci. USA
**2016**, 113, 4982–4987. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Onsager, L. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev.
**1944**, 65, 117. [Google Scholar] [CrossRef] - Mears, N.E. Stochastic Simulations of Far-From-Equilibrium Thermodynamics; WPI: Worcester, MA, USA, 2019. [Google Scholar]
- Kuramoto, Y. International symposium on mathematical problems in theoretical physics. Lect. Notes Phys.
**1975**, 30, 420. [Google Scholar] - Strogatz, S.H. From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Phys. D Nonlinear Phenom.
**2000**, 143, 1–20. [Google Scholar] [CrossRef] [Green Version] - Acebrón, J.A.; Bonilla, L.L.; Vicente, C.J.P.; Ritort, F.; Spigler, R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys.
**2005**, 77, 137. [Google Scholar] [CrossRef] [Green Version] - Cumin, D.; Unsworth, C. Generalising the Kuramoto model for the study of neuronal synchronisation in the brain. Phys. D Nonlinear Phenom.
**2007**, 226, 181–196. [Google Scholar] [CrossRef] - Forrester, D.M. Arrays of coupled chemical oscillators. Sci. Rep.
**2015**, 5, 16994. [Google Scholar] [CrossRef] [Green Version] - Bodenschatz, E.; Pesch, W.; Ahlers, G. Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech.
**2000**, 32, 709–778. [Google Scholar] [CrossRef] [Green Version] - Behringer, R. Rayleigh–Benard convection and turbulence in liquid helium. Rev. Mod. Phys.
**1985**, 57, 657. [Google Scholar] [CrossRef] - Koschmieder, E.L. Bénard Cells and Taylor Vortices; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Grossmann, S.; Lohse, D. Fluctuations in turbulent Rayleigh–Bénard convection: The role of plumes. Phys Fluids
**2004**, 16, 4462–4472. [Google Scholar] [CrossRef] - Pandey, A.; Scheel, J.D.; Schumacher, J. Turbulent superstructures in Rayleigh–Bénard convection. Nat. Commun.
**2018**, 9, 2118. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Scheel, J.D.; Schumacher, J. Predicting transition ranges to fully turbulent viscous boundary layers in low Prandtl number convection flows. Phys. Rev. Fluids
**2017**, 2, 123501. [Google Scholar] [CrossRef] - Shannon, C. Error Control Coding. Bell Syst. Tech. J.
**1948**, 27, 379–423. [Google Scholar] [CrossRef] [Green Version] - Wang, T.; Roychowdhury, J. Oscillator-based ising machine. arXiv
**2017**, arXiv:1709.08102. [Google Scholar] - Faranda, D.; Mihelich, M.; Dubrulle, B. A non-equilibrium Ising model of turbulence. Phase Transit.
**2017**, 90, 1079–1088. [Google Scholar] [CrossRef] [Green Version] - Vilar, J.M.; Rubi, J. Thermodynamics‚ Äúbeyond‚ Äù local equilibrium. Proc. Natl. Acad. Sci. USA
**2001**, 98, 11081–11084. [Google Scholar] [CrossRef] [Green Version] - Karl, M.; Nowak, B.; Gasenzer, T. Tuning universality far from equilibrium. Sci. Rep.
**2013**, 3, 2394. [Google Scholar] [CrossRef] [Green Version] - Colangeli, M.; Giardinà, C.; Giberti, C.; Vernia, C. Nonequilibrium two-dimensional Ising model with stationary uphill diffusion. Phys. Rev. E
**2018**, 97, 030103. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**(

**a**) Figure shows phase transition in a two-dimensional square lattice Ising model. The magnetization in the system ($S/\overline{S}$) is plotted as a function of the inverse temperature ($\beta $). Vertical dotted line denotes ${\beta}_{c}\approx 0.44$ on the abscissa. (

**b**) Figure shows magnetization as a function of time for three cases: $h=0$ (dashed), $h=Asin\omega t$ (solid) and $h=\mathrm{constant}$ (dotted). (

**c**) Figure shows magnetization as a function of inverse temperature for the previous three cases. (

**d**) Figure shows magnetization (in black) and standard deviation of magnetization (${\sigma}_{S/\overline{S}}$, in red) as a function of simulation time-steps.

**Figure 2.**(

**a**) Figure shows the scaled standard deviation ($\sigma /{\sigma}_{max}$) of the angular frequency as a function of time (log-scale) in a two-dimensional Kuramoto system on a lattice for different coupling strengths ($\kappa $). (

**b**–

**d**) Figures show scaled standard deviation of the temperature as a function of time (log-scale) for different fluid samples in a Rayleigh–Bénard convection system. Note that the Rayleigh number ($Ra$) changes from non-turbulent to turbulent. (

**e**–

**h**) Figures show the evolution of the order parameter (R) as a function of time (log-scale) for the four systems. Note that time is in seconds.

**Figure 3.**(

**a**) Figure shows the probability density functions (log-scale) for the scaled angular frequency fluctuation ($\delta {\omega}^{\star}$). The initial randomized state data is fit with a Gaussian (in black) and the final state data is fit with a Lorentzian (in red). (

**b**) Figure shows the probability density functions (log-scale) for the scaled thermal fluctuation ($\delta {T}^{\star}$) for two different fluid samples at room temperature along with respective Gaussian fits. (

**c**) Figure shows the probability density functions (log-scale) for the scaled thermal fluctuation for two different fluid samples at steady-state along with kernel density estimates (KDE). Note that in the final state the two samples correspond to two separate Rayleigh numbers. (

**d**) Figure shows the probability density functions (log-scale) for the scaled thermal fluctuation for two different fluid samples at steady-state along with respective Gaussian (in black) and Lorentzian (in red) tails. The absence of sufficient data points prevent us from fitting the final state data of the $Ra=1790$ sample with a Lorentzian function.

**Figure 4.**Figure shows scaled standard deviation ($\sigma /{\sigma}_{max}$) of the angular frequency and lattice entropy ($S/{S}_{max}$) as a function of time in a two-dimensional Kuramoto system on a lattice.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chatterjee, A.; Mears, N.; Yadati, Y.; Iannacchione, G.S.
An Overview of Emergent Order in Far-from-Equilibrium Driven Systems: From Kuramoto Oscillators to Rayleigh–Bénard Convection. *Entropy* **2020**, *22*, 561.
https://doi.org/10.3390/e22050561

**AMA Style**

Chatterjee A, Mears N, Yadati Y, Iannacchione GS.
An Overview of Emergent Order in Far-from-Equilibrium Driven Systems: From Kuramoto Oscillators to Rayleigh–Bénard Convection. *Entropy*. 2020; 22(5):561.
https://doi.org/10.3390/e22050561

**Chicago/Turabian Style**

Chatterjee, Atanu, Nicholas Mears, Yash Yadati, and Germano S. Iannacchione.
2020. "An Overview of Emergent Order in Far-from-Equilibrium Driven Systems: From Kuramoto Oscillators to Rayleigh–Bénard Convection" *Entropy* 22, no. 5: 561.
https://doi.org/10.3390/e22050561