Traveling-Wave Convection with Periodic Source Defects in Binary Fluid Mixtures with Strong Soret Effect
Abstract
:1. Introduction
2. Mathematical Physical Model
2.1. Governing Equations
2.2. Boundary and Initial Conditions
2.3. Order Parameters
2.4. Numerical Method
3. Results and Discussion
3.1. Spatiotemporal Evolution of the PSD-TW State
3.2. Causes of Formation and Survival for the PSD-TW State
3.3. Variation of the Order Parameters
3.4. Influences of and
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cross, M.C.; Hohenberg, P.C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 1993, 65, 851–1112. [Google Scholar] [CrossRef] [Green Version]
- Walden, R.W.; Kolodner, P.; Passner, A.; Surko, C.M. Traveling waves and chaos in convection in binary fluid mixtures. Phys. Rev. Lett. 1985, 55, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Moses, E.; Fineberg, J.; Steinberg, V. Multistability and confined traveling-wave patterns in a convecting binary mixture. Phys. Rev. A 1987, 35, 2757–2760. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, R.; Ahlers, G.; Cannell, D.S. Traveling waves and spatial variation in the convection of a binary mixture. Phys. Rev. A 1987, 35, 2761–2764. [Google Scholar] [CrossRef] [PubMed]
- Fineberg, J.; Moses, E.; Steinberg, V. Spatially and temporally modulated traveling-wave pattern in convecting binary mixtures. Phys. Rev. Lett. 1988, 61, 838–841. [Google Scholar] [CrossRef]
- Kolodner, P.; Surko, C.M. Weakly nonlinear traveling-wave convection. Phys. Rev. Lett. 1988, 61, 842–845. [Google Scholar] [CrossRef]
- Steinberg, V.; Fineberg, J.; Moses, E.; Rehberg, I. Pattern selection and transition to turbulence in propagating waves. Physica D 1989, 37, 359–383. [Google Scholar] [CrossRef]
- Kolodner, P.; Surko, C.M.; Williams, H. Dynamics of traveling waves near the onset of convection in binary fluid mixtures. Physica D 1989, 37, 319–333. [Google Scholar] [CrossRef]
- Kolodner, P.; Glazier, J.A.; Williams, H. Dispersive chaos in one-dimensional traveling-wave convection. Phys. Rev. Lett. 1990, 65, 1579–1582. [Google Scholar] [CrossRef]
- Barten, W.; Lücke, M.; Hort, W.; Kamps, M. Fully developed traveling-wave convection in binary fluid mixtures. Phys. Rev. Lett. 1989, 63, 376–379. [Google Scholar] [CrossRef]
- Barten, W.; Lücke, M.; Kamps, M.; Schmitz, R. Convection in binary-fluid mixtures I. Extended traveling-wave and stationary states. Phys. Rev. E 1995, 51, 5636–5661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barten, W.; Lücke, M.; Kamps, M.; Schmitz, R. Convection in binary-fluid mixtures II. Localized traveling waves. Phys. Rev. E 1995, 51, 5662–5680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, D.; Lücke, M. Localized waves without the existence of extended waves: Oscillatory convection of binary mixtures with strong Soret effect. Phys. Rev. Lett. 2002, 89, 054502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, L.Z.; Harada, Y.; Yahata, H. Modulated traveling waves in binary fluid convection in an intermediate-aspect-ratio rectangular cell. Prog. Theor. Phys. 1997, 97, 831–848. [Google Scholar] [CrossRef] [Green Version]
- Batiste, O.; Knobloch, E.; Alonso, A.; Mercader, I. Spatially localized binary-fluid convection. J. Fluid Mech. 2006, 560, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Mercader, I.; Batiste, O.; Alonso, A.; Knobloch, E. Convectons, anticonvectons and multiconvectons in binary fluid convection. J. Fluid Mech. 2011, 667, 586–606. [Google Scholar] [CrossRef] [Green Version]
- Mercader, I.; Batiste, O.; Alonso, A.; Knobloch, E. Travelling convectons in binary fluid convection. J. Fluid Mech. 2013, 722, 240–266. [Google Scholar] [CrossRef] [Green Version]
- Taraut, A.V.; Smorodin, B.L.; Lücke, M. Collisions of localized convection structures in binary fluid mixtures. New J. Phys 2012, 14, 093055. [Google Scholar] [CrossRef]
- Watanabe, T.; Iima, M.; Nishiura, Y. Spontaneous formation of travelling localized structures and their asymptotic behaviour in binary fluid convection. J. Fluid Mech. 2012, 712, 219–243. [Google Scholar] [CrossRef]
- Smorodin, B.L.; Myznikova, B.I.; Ishutov, S.M. Traveling-wave convection in a binary fluid mixture under high-frequency vertical vibrations. Phys. Rev. E 2014, 89, 053004. [Google Scholar] [CrossRef]
- Zhao, B.; Tian, Z. Numerical investigation of binary fluid convection with a weak negative separation ratio in finite containers. Phys. Fluids 2015, 27, 074102. [Google Scholar] [CrossRef]
- Mercader, I.; Batiste, O.; Alonso, A.; Knobloch, E. Effect of small inclination on binary convection in elongated rectangular cells. Phys. Rev. E 2019, 99, 023113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercader, I.; Alonso, A.; Batiste, O. Numerical analysis of the Eckhaus instability in travelling-wave convection in binary mixtures. Eur. Phys. J. E 2004, 15, 311–318. [Google Scholar] [CrossRef]
- Alonso, A.; Batiste, O.; Mercader, I. Numerical simulations of binary fluid convection in large aspect ratio annular containers. Eur. Phys. J. Spec. Top. 2007, 146, 261–277. [Google Scholar] [CrossRef]
- Büchel, P.; Lücke, M. Sidewall induced Eckhaus instability of propagating wave convection in binary fluid mixtures. Entropy 1999, 218, 22–26. [Google Scholar]
- Li, G.D.; Huang, Y.N. Traveling-wave convection with Eckhaus instability modulation in a binary fluid mixture. Acta Phys. Sin.-Ch. Ed. 2007, 56, 4742–4748. [Google Scholar]
- Ning, L.Z.; Qi, X.; Zhou, Y.; Yu, L. Defect structures of Rayleigh-Bénard travelling wave convection in binary fluid mixtures. Acta Phys. Sin.-Ch. Ed. 2009, 58, 2528–2534. [Google Scholar]
- Van der Poel, E.P.; Ostilla-Mónico, R.; Verzicco, R.; Grossmann, S.; Lohse, D. Logarithmic mean temperature profiles and their connection to plume emissions in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 2015, 115, 154501. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Mathai, V.; Stevens, R.J.A.M.; Verzicco, R.; Lohse, D. Transition to the ultimate regime in two-dimensional Rayleigh-Bénard convection. Phys. Rev. Lett. 2018, 120, 144502. [Google Scholar] [CrossRef] [Green Version]
- Schmalzl, J.; Breuer, M.; Hansen, U. On the validity of two-dimensional numerical approaches to time-dependent thermal convection. EPL 2004, 67, 390–396. [Google Scholar] [CrossRef]
- Van der Poel, E.P.; Stevens, R.J.A.M.; Lohse, D. Comparison between two- and three-dimensional Rayleigh–Bénard convection. J. Fluid Mech. 2013, 736, 177–194. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-X.; Zhou, Q. Counter-gradient heat transport in two-dimensional turbulent Rayleigh–Bénard convection. J. Fluid Mech. 2013, 737, R3. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, Y.-X.; Jiang, N.; Liu, Y.-L.; Lu, Z.-M.; Qiu, X.; Zhou, Q. Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection. Phys. Rev. E 2017, 96, 023105. [Google Scholar] [CrossRef] [PubMed]
- Batiste, O.; Knobloch, E. Simulations of localized states of stationary convection in 3He-4He mixtures. Phys. Rev. Lett. 2005, 95, 244501. [Google Scholar] [CrossRef] [Green Version]
- Kolodner, P.; Bensimon, D.; Surko, C.M. Traveling-wave convection in an annulus. Phys. Rev. Lett. 1988, 60, 1723–1726. [Google Scholar] [CrossRef]
- Baxter, G.W.; Eaton, K.D.; Surko, C.M. Eckhaus instability for traveling waves. Phys. Rev. A 1992, 46, 1735–1738. [Google Scholar] [CrossRef]
- Kolodner, P. Observations of the Eckhaus instability in one-dimensional traveling-wave convection. Phys. Rev. A 1992, 46, R1739–R1742. [Google Scholar] [CrossRef]
- Kolodner, P. Extended states of nonlinear traveling-wave convection. I. The Eckhaus instability. Phys. Rev. A 1992, 46, 6431–6451. [Google Scholar] [CrossRef]
- Kolodner, P. Extended states of nonlinear traveling-wave convection. II. Fronts and spatiotemporal defects. Phys. Rev. A 1992, 46, 6452–6468. [Google Scholar] [CrossRef]
- Qin, Q.; Xia, Z.A.; Tian, Z.F. High accuracy numerical investigation of double-diffusive convection in a rectangular enclosure with horizontal temperature and concentration gradients. Int. J. Heat Mass Tran. 2014, 71, 405–423. [Google Scholar] [CrossRef]
- Tian, Z.; Liang, X.; Yu, P. A higher order compact finite difference algorithm for solving the incompressible Navier-Stokes equations. Int. J. Numer. Meth. Eng. 2011, 88, 511–532. [Google Scholar] [CrossRef] [Green Version]
- Kolodner, P.; Williams, H.; Moe, C. Optical measurement of the Soret coefficient of ethanolwater solutions. J. Chem. Phys. 1988, 88, 6512–6524. [Google Scholar] [CrossRef]
- Knobloch, E.; Moore, D.R. Linear stability of experimental Soret convection. Phys. Rev. A 1988, 37, 860–870. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Zhao, B.; Yang, J.; Tian, Z.; Ye, M. Traveling-Wave Convection with Periodic Source Defects in Binary Fluid Mixtures with Strong Soret Effect. Entropy 2020, 22, 283. https://doi.org/10.3390/e22030283
Zheng L, Zhao B, Yang J, Tian Z, Ye M. Traveling-Wave Convection with Periodic Source Defects in Binary Fluid Mixtures with Strong Soret Effect. Entropy. 2020; 22(3):283. https://doi.org/10.3390/e22030283
Chicago/Turabian StyleZheng, Laiyun, Bingxin Zhao, Jianqing Yang, Zhenfu Tian, and Ming Ye. 2020. "Traveling-Wave Convection with Periodic Source Defects in Binary Fluid Mixtures with Strong Soret Effect" Entropy 22, no. 3: 283. https://doi.org/10.3390/e22030283
APA StyleZheng, L., Zhao, B., Yang, J., Tian, Z., & Ye, M. (2020). Traveling-Wave Convection with Periodic Source Defects in Binary Fluid Mixtures with Strong Soret Effect. Entropy, 22(3), 283. https://doi.org/10.3390/e22030283