Distinguishability and Disturbance in the Quantum Key Distribution Protocol Using the Mean Multi-Kings’ Problem
Abstract
:1. Introduction
2. Protocol
- Alice prepares a composite system ( qubits) in the initial state () with probability . Then, she sends the qubit to King ().
- Each King performs the measurement () with probability on and obtains an outcome . After the measurement, each King returns to Alice.
- Alice performs the measurement () on when the initial state was . Then, she obtains an outcome .
- After the measurement, each King announces post-information to Alice.
- Alice obtains a sequence from the outcome k, the post-information , and the initial state .
- They repeat the above process. After that, Alice randomly chooses sequences from all sequences. Similarly, kings work together to choose sequences which are the same positions as the positions Alice chose. Then, Alice and kings work together to calculate error rate .
3. Protocol: n = 2
4. Distinguishability vs. Disturbance
5. Summary
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
References
- Chefles, A. Quantum state discrimination. Contemp. Phys. 2000, 41, 401–424. [Google Scholar] [CrossRef] [Green Version]
- Bergou, J.A.; Herzog, U.; Hillery, M. Quantum State Estimation, 11 Discrimination of Quantum States; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2007; Volume 649. [Google Scholar]
- Qiu, D.; Li, L. Relation between minimum-error discrimination and optimum unambiguous discrimination. Phys. Rev. A 2010, 82, 032333. [Google Scholar] [CrossRef]
- Wilde, M. Quantum Information Theory; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Vaidman, L.; Aharonov, Y.; Albert, D.Z. How to ascertain the values of σx, σy, and σz of a spin-1/2 particle. Phys. Rev. Lett. 1987, 58, 1385–1387. [Google Scholar] [CrossRef] [PubMed]
- Englert, B.-G.; Aharonov, Y. The mean-kings’ problem: Prime degrees of freedom. Phys. Lett. A 2001, 284, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Aharonov, Y.; Bergmann, P.G.; Lebowitz, J.L. Time Symmetry in the Quantum Process of Measurement. Phys. Rev. 1964, 134, B1410. [Google Scholar] [CrossRef]
- Bub, J. Secure key distribution via pre- and postselected quantum states. Phys. Rev. A 2001, 63, 032309. [Google Scholar] [CrossRef] [Green Version]
- Werner, A.H.; Franz, T.; Werner, R.F. Quantum Cryptography as a Retrodiction Problem. Phys. Rev. Lett. 2009, 103, 220504. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Miyadera, T.; Imai, H. Quantum Key Distribution using Mean King Problem with Modified Measurement Schemes. In Proceedings of the International Symposium on Information Theory and Its Applications 2012, Honolulu, HI, USA, 28–31 October 2012; pp. 317–321. [Google Scholar]
- Azuma, H.; Ban, M. The intercept/resend attack and the collective attack on the quantum key distribution protocol based on the pre- and post-selection effect. arXiv 2018, arXiv:quant-ph/1811.07282. [Google Scholar]
- Nakayama, A.; Yoshida, M.; Cheng, J. Quantum Key Distribution using Extended Mean King’s Problem. In Proceedings of the International Symposium on Information Theory and Its Applications 2018, Singapore, 28–31 October 2018; pp. 339–343. [Google Scholar]
- Bennett, C.H.; Brassard, G. Quantum Cryptography: Public Key Distribution And Coin Tossing. In Proceedings of the IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, 9–12 December 1984; pp. 175–179. [Google Scholar]
- Fuchs, C.A.; Jacobs, K. Information-tradeoff relations for finite-strength quantum measurements. Phys. Rev. A 2001, 63, 062305. [Google Scholar] [CrossRef] [Green Version]
- Boykin, P.O.; Roychowdhury, V.P. Information vs. Disturbance in Dimension D. Quantum Inf. Comput. 2005, 5, 396–412. [Google Scholar]
- Miyadera, T.; Imai, H. Information-disturbance theorem for mutually unbiased observables. Phys. Rev. A 2006, 73, 042317. [Google Scholar] [CrossRef] [Green Version]
- Miyadera, T.; Imai, H. Information-Disturbance theorem and Uncertainty Relation. arXiv 2007, arXiv:quant-ph/0707.4559. [Google Scholar]
- Busch, P. No Information Without Disturbance: Quantum Limitations of Measurement; Springer: Berlin/Heidelberg, Germany, 2009; pp. 229–256. [Google Scholar]
- Biham, E.; Boyer, M.; Boykin, P.O.; Mor, T.; Roychowdhury, V. A proof of security of quantum key distribution. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, Portland, OR, USA, 21–23 May 2000; pp. 715–724. [Google Scholar]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Maurer, U.M. Generalized Privacy Amplification. IEEE Trans. Inf. Theory 1995, 41, 1915–1923. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, D.; Ekert, A.; Jozsa, R.; Macchiavello, C.; Popescu, S.; Sanpera, A. Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. Phys. Rev. Lett. 1996, 77, 2818–2821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, H.-K.; Chau, H.F. Unconditional Security of Quantum Key Distribution over Arbitrarily Long Distances. Science 1999, 283, 2050–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhlmann, A. The “transition probability” in the state space of a *-algebra. Rep. Math. Phys. 1976, 9, 273–279. [Google Scholar] [CrossRef]
- Jozsa, R. Fidelity for Mixed Quantum States. J. Mod. Opt. 1994, 41, 2315–2323. [Google Scholar] [CrossRef]
- Fuchs, C.A.; Caves, C.M. Mathematical techniques for quantum communication theory. Open Syst. Inf. Dyn. 1995, 3, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Barnum, H.; Caves, C.M.; Fuchs, C.A.; Jozsa, R.; Schumacher, B. Noncommuting Mixed States Cannot Be Broadcast. Phys. Rev. Lett. 1996, 76, 2818–2821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyadera, T.; Imai, H. State collapse in Information Transfer and its applications. In Proceedings of the 2008 Symposium on Cryptography and Information Security, Miyazaki, Japan, 22–25 January 2008; p. 2D2-4. [Google Scholar]
NA | —— | NA | —— | NA | —— | NA | —— |
NA | —— | NA | —— | NA | —— | NA | —— |
NA | —— | NA | —— | NA | —— | NA | —— |
NA | —— | NA | —— | NA | —— | NA | —— |
NA | —— | NA | —— | NA | —— | NA | —— |
NA | —— | NA | —— | NA | —— | NA | —— |
NA | —— | NA | —— | NA | —— | NA | —— |
NA | —— | NA | —— | NA | —— | NA | —— |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, M.; Nakayama, A.; Cheng, J. Distinguishability and Disturbance in the Quantum Key Distribution Protocol Using the Mean Multi-Kings’ Problem. Entropy 2020, 22, 1275. https://doi.org/10.3390/e22111275
Yoshida M, Nakayama A, Cheng J. Distinguishability and Disturbance in the Quantum Key Distribution Protocol Using the Mean Multi-Kings’ Problem. Entropy. 2020; 22(11):1275. https://doi.org/10.3390/e22111275
Chicago/Turabian StyleYoshida, Masakazu, Ayumu Nakayama, and Jun Cheng. 2020. "Distinguishability and Disturbance in the Quantum Key Distribution Protocol Using the Mean Multi-Kings’ Problem" Entropy 22, no. 11: 1275. https://doi.org/10.3390/e22111275
APA StyleYoshida, M., Nakayama, A., & Cheng, J. (2020). Distinguishability and Disturbance in the Quantum Key Distribution Protocol Using the Mean Multi-Kings’ Problem. Entropy, 22(11), 1275. https://doi.org/10.3390/e22111275