Horizon Thermodynamics in D-Dimensional f(R) Black Hole
Abstract
:1. Introduction
2. The New Horizon-First Law and Its Application in f(R) Theory
3. The Entropy and Energy of D-Dimensional f(R) Black Hole
4. Applications
4.1. The Constant Ricci Curvature Case
4.2. The Non-Constant Ricci Curvature Case
4.2.1.
4.2.2.
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Bardeen, J.M.; Carter, B.; Hawking, S.W. The four laws of black hole mechanics. Commun. Math. Phys. 1973, 31, 161–170. [Google Scholar] [CrossRef]
- Jacobson, T. Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R. The thermal entropy density of spacetime. Entropy 2013, 15, 156. [Google Scholar] [CrossRef]
- Yang, R.-J. Is gravity entropic force? Entropy 2014, 16, 4483–4488. [Google Scholar] [CrossRef] [Green Version]
- Brustein, R.; Hadad, M. The Einstein equations for generalized theories of gravity and the thermodynamic relation δQ=TδS are equivalent. Phys. Rev. Lett. 2009, 103, 101301. [Google Scholar] [CrossRef]
- Eling, C.; Guedens, R.; Jacobson, T. Non-equilibrium thermodynamics of spacetime. Phys. Rev. Lett. 2006, 96, 121301. [Google Scholar] [CrossRef] [Green Version]
- Elizalde, E.; Silva, P.J. F(R) gravity equation of state. Phys. Rev. D 2008, 78, 061501. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Geng, C.-Q.; Nojiri, S.; Odintsov, S.D. Equivalence of modified gravity equation to the Clausius relation. Europhys. Lett. 2010, 89, 50003. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Jing, J.; Liao, H. Black hole entropy arising from massless scalar field with Lorentz violation induced by the coupling to Einstein tensor. Phys. Lett. B 2015, 751, 474–478. [Google Scholar] [CrossRef]
- Padmanabhan, T. Classical and quantum thermodynamics of horizons in spherically symmetric space-times. Class. Quant. Gravity 2002, 19, 5387–5408. [Google Scholar] [CrossRef]
- Paranjape, A.; Sarkar, S.; Padmanabhan, T. Thermodynamic route to field equations in Lancos-Lovelock gravity. Phys. Rev. D 2006, 74, 104015. [Google Scholar] [CrossRef] [Green Version]
- Sheykhi, A.; Dehghani, M.H.; Dehghani, R. Horizon Thermodynamics and Gravitational Field Equations in Quasi Topological Gravity. Gen. Rel. Gravity 2014, 46, 1679. [Google Scholar] [CrossRef] [Green Version]
- Kothawala, D.; Sarkar, S.; Padmanabhan, T. Einstein’s equations as a thermodynamic identity: The Cases of stationary axisymmetric horizons and evolving spherically symmetric horizons. Phys. Lett. B 2007, 652, 338–342. [Google Scholar] [CrossRef] [Green Version]
- Hansen, D.; Kubiznak, D.; Mann, R. Horizon Thermodynamics from Einstein’s Equation of State. Phys. Lett. B 2017, 771, 277–280. [Google Scholar] [CrossRef]
- Feng, H.; Yang, R.-J. Horizon thermodynamics in f(R,RμνRμν) Theory. Chin. Phys. C 2020, in press. [Google Scholar]
- Zheng, Y.; Yang, R.-J. Horizon thermodynamics in f(R) theory. Eur. Phys. J. C 2018, 78, 682. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, R.-J. Entropy and Energy of Static Spherically Symmetric Black Hole in f(R) theory. Universe 2020, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.-J. Constraints from accretion onto a Tangherlini-Reissner-Nordstrom black hole. Eur. Phys. J. C 2019, 79, 367. [Google Scholar] [CrossRef]
- Cognola, G.; Gorbunova, O.; Sebastiani, L.; Zerbini, S. On the Energy Issue for a Class of Modified Higher Order Gravity Black Hole Solutions. Phys. Rev. D 2011, 84, 023515. [Google Scholar] [CrossRef] [Green Version]
- Deser, S.; Tekin, B. Energy in generic higher curvature gravity theories. Phys. Rev. D 2003, 6, 084009. [Google Scholar] [CrossRef] [Green Version]
- Deser, S.; Tekin, B. New energy definition for higher curvature gravities. Phys. Rev. D 2007, 75, 084032. [Google Scholar] [CrossRef] [Green Version]
- Abreu, G.; Visser, M. Tolman mass, generalized surface gravity, and entropy bounds. Phys. Rev. Lett. 2010, 105, 041302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, R.-G.; Cao, L.-M.; Hu, Y.-P.; Ohta, N. Generalized Misner-Sharp Energy in f(R) Gravity. Phys. Rev. D 2009, 80, 104016. [Google Scholar] [CrossRef] [Green Version]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Rel. 2010, 13, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of Gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef] [Green Version]
- Hayward, S.A. Unified first law of black hole dynamics and relativistic thermodynamics. Class. Quant. Gravity 1998, 15, 3147–3162. [Google Scholar] [CrossRef]
- Dyer, E.; Hinterbichler, K. Boundary Terms, Variational Principles and Higher Derivative Modified Gravity. Phys. Rev. D 2009, 79, 024028. [Google Scholar] [CrossRef] [Green Version]
- Vollick, D.N. Noether Charge and Black Hole Entropy in Modified Theories of Gravity. Phys. Rev. D 2007, 76, 124001. [Google Scholar] [CrossRef] [Green Version]
- Iyer, V.; Wald, R.M. A Comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes. Phys. Rev. D 1995, 52, 4430–4439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Criscienzo, R.; Hayward, S.A.; Nadalini, M.; Vanzo, L.; Zerbini, S. Hamilton-Jacobi tunneling method for dynamical horizons in different coordinate gauges. Class. Quant. Gravity 2010, 27, 015006. [Google Scholar] [CrossRef] [Green Version]
- Pogosian, L.; Silvestri, A. The pattern of growth in viable f(R) cosmologies. Phys. Rev. D 2008, 77, 023503. [Google Scholar] [CrossRef] [Green Version]
- Dolgov, A.D.; Kawasaki, M. Can modified gravity explain accelerated cosmic expansion? Phys. Lett. B 2003, 573, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Parikh, M.K. The Volume of black holes. Phys. Rev. D 2006, 73, 124021. [Google Scholar] [CrossRef] [Green Version]
- Amirabi, Z.; Halilsoy, M.; Habib Mazharimousavi, S. Generation of spherically symmetric metrics in f(R) gravity. Eur. Phys. J. C 2016, 76, 338. [Google Scholar] [CrossRef] [Green Version]
- Bueno, P.; Cano, P.A. On black holes in higher-derivative gravities. Class. Quant. Gravity 2017, 34, 175008. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G.G.L.; Capozziello, S. Charged spherically symmetric black holes in f(R) gravity and their stability analysis. Phys. Rev. D 2019, 99, 104018. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Yang, R.-J. Horizon Thermodynamics in D-Dimensional f(R) Black Hole. Entropy 2020, 22, 1246. https://doi.org/10.3390/e22111246
Zhu C, Yang R-J. Horizon Thermodynamics in D-Dimensional f(R) Black Hole. Entropy. 2020; 22(11):1246. https://doi.org/10.3390/e22111246
Chicago/Turabian StyleZhu, Chenrui, and Rong-Jia Yang. 2020. "Horizon Thermodynamics in D-Dimensional f(R) Black Hole" Entropy 22, no. 11: 1246. https://doi.org/10.3390/e22111246