A Symbolic Encapsulation Point as Tool for 5G Wideband Channel Cross-Layer Modeling
Abstract
:1. Introduction
2. Related Work
3. Methods Applied
3.1. Propagation Deterministic Mechanism
- ${\phi}_{i}\left(t\right)$, introduced by the scatterer reflection coefficient and here, omitted due to complexity;
- $\mathsf{\Delta}{\varphi}_{i}$, originating from phase rotation along the electrical distance of a wave.$$\mathsf{\Delta}{\varphi}_{i}=\frac{2\pi}{{\lambda}_{0}}{d}_{i}$$
- ${c}_{i}\left(t\right)$, which represent ith scatterer contribution to overall magnitude of received signal;
- ${x}_{CE}\left(t-\raisebox{1ex}{${d}_{i}$}\!\left/ \!\raisebox{-1ex}{$c$}\right.\right)$, term that follows changes of transmitted signal.
3.2. Level Crossing Rate and Average Fade Duration
3.3. Finite State Markov Chain Constitution
3.3.1. State Classification Model
3.3.2. Channel Matrix Derivation
4. Symbolic Encapsulation Roadmap
5. Numerical and Simulation Results
5.1. HST Scenario
5.2. V2V Scenario
5.3. V2Vcrossroad Scenario
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sassan, A. Key Performance Indicators, Architectural, System and Service Requirements. In 5G NR: Architecture, Technology, Implementation and Operation of 3GPP New Radio Standards; Elsevier: London, UK, 2019; p. xlviii. [Google Scholar]
- Kotkamp, M.; Pandey, A.; Raddino, D.; Roessler, A.; Stuhfauth, R. End to end quality of service. In 5G New Radio, Fundamentals, Procedures, Testing Aspects; Rohde & Schwarz: Munich, Germany, 2019; p. 285. [Google Scholar]
- 3GPP TS 23.501v16.4.0: System Architecture for the 5G System (5GS). Available online: www.3gpp.org/ftp/Specs/archive/23_series/23.501/ (accessed on 17 May 2020).
- Jiang, H.; Gui, G. Key differences Between V2V and Conventional F2M Channel Models. In Channel Modeling in 5G Wireless Communication Systems; Shen, X.S., Ed.; Springer: Cham, Switzerland, 2019; pp. 4–5. [Google Scholar]
- Varma, V.S.; Belmega, E.V.; Lasaulce, S.; Debbah, M. Energy Efficient Communications in MIMO Wireless Channels. In Green Communications: Theoretical Fundamentals, Algorithms and Applications; Wu, J., Rangan, S., Zhang, H., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2013; pp. 520–547. [Google Scholar]
- Anjos, A.A.; Marins, T.R.; Souza, R.A.; Yacoub, M.D. Higher Order Statistics for the α-η-κ-μ Fading Model. IEEE Trans. Antennas Propag. 2018, 66, 3002–3016. [Google Scholar] [CrossRef]
- Pokrajac, I.; Vračar, M.; Šević, T.; Joksimović, V. Position Determination of Acoustic Source Using Higher-Order Spectral Analysis for Time of Arrival Estimation. Sci. Tech. Rev. 2019, 69, 41–48. [Google Scholar] [CrossRef]
- Talha, B.; Patzold, M. Level Crossing Rate and Average Duration of Fades of the Envelope of Mobile-to-Mobile Fading Channels in Cooperative Networks Under Line-of-Sight Conditions. In Proceedings of the IEEE GLOBECOM 2008—2008 IEEE Global Telecommunications Conference, New Orleans, LA, USA, 30 November–4 December 2008. [Google Scholar] [CrossRef]
- Fontan, F.P.; Espineira, P.M. Modeling the Wireless Propagation Channel: A Simulation Approach with Matlab; John Wiley & Sons Ltd.: Chichester, UK, 2008. [Google Scholar]
- Das, S.S.; Prasad, R. QoS Provisioning in OFDMA Networks. In Evolution of Air Interface towards 5G: Radio Access Technology and Performance Analysis; River Publishers: Gistrup, Denmark, 2019; pp. 207–223. [Google Scholar]
- Ali, A.O.; Cenk, M.Y.; Torlak, M. Second-Order Statistics of MIMO Razleigh Interference Channels: Theory, Applications and Analysis. arXiv 2015, arXiv:1509.00506. [Google Scholar]
- Fukawa, H.; Tateishi, Y.; Suzuki, H. Packet-Error-Rate Analysis Using Markov Models of the Signal-to-Interference Ratio for Mobile Packet Systems. IEEE Trans. Veh. Technol. 2012, 61, 2517–2530. [Google Scholar] [CrossRef]
- Panajotović, A.S.; Sekulović, N.M.; Banjdur, M.V.; Stefanović, M.C. Second-Order Measures of Performance of Dual SC Macro-Diversity System with Unbalanced BSs Exposed to CCI in Composite Fading Channels. IETE J. Res. 2018, 64, 702–708. [Google Scholar] [CrossRef]
- Jameel, F.; Faisal; Haider, M.A.; Butt, A.A. Second Order Fading Statistics of UAV Networks. In Proceedings of the 2017 Fifth International Conference on Aerospace Science & Engineering (ICASE), Islamabad, Afganistan, 14–16 November 2017; pp. 1–6. [Google Scholar]
- Zeng, L.; Cheng, X.; Wang, C.; Yin, X. Second Order Statistics of Non-Isotropic UAV Ricean Fading Channels. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Jakšić, D.; Bojović, R.; Spalević, P.; Stefanović, D.; Trajković, S. Performance Analysis of 5G Transmission over Fading Channels with Random IG Distributed LOS Components. Int. J. Antennas Propag. 2017, 1–4. [Google Scholar] [CrossRef]
- Wang, C.; Bian, J.; Sun, J.; Zhang, W.; Zhang, M. A Survey of 5G Channel Measurements and Models. IEEE Commun. Surv. Tutor. 2018, 20, 3142–3168. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, C.; Ai, B.; Aggoune, H. Envelope Level Crossing Rate and Average Fade Duration of Nonisotropic Vehicle-to-Vehicle Ricean Fading Channels. IEEE Trans. Intell. Transp. Syst. 2014, 15, 62–72. [Google Scholar] [CrossRef]
- Bian, J.; Wang, C.; Feng, R.; Huang, J.; Yang, Y.; Zhang, M. A WINNER+ Based 3-D Stationary Wideband MIMO Channel Model. IEEE Trans. Wirel. Commun. 2018, 17, 1755–1767. [Google Scholar] [CrossRef]
- Lin, S.; Zhong, Z.; Cai, L.; Luo, Y. Finite state Markov modeling for high speed railway wireless communication channel. In Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012; pp. 5421–5426. [Google Scholar] [CrossRef]
- Li, X.; Shen, C.; Bo, A.; Zhu, G. Finite state Markov modeling of fading channels: A field measurement in high-speed railways. In Proceedings of the 2013 IEEE/CIC International Conference on Communications in China (ICCC), Xi’an, China, 12–14 August 2013; pp. 577–582. [Google Scholar] [CrossRef]
- 3GPP TS 38.901v16.1.0: Study on Channel Models for Frequencies from 0.5 to 100 GHz. Available online: www.3gpp.org/ftp/Specs/archive/38_series/38.901/ (accessed on 28 May 2020).
- 5G New Radio Design with MATLAB. Available online: www.mathworks.com/campaigns/offers/5g-technology-ebook.html?elqCampaignId=10588 (accessed on 3 June 2020).
- Jaechel, S.; Raschakowski, L.; Borner, K.; Thiele, L. QuaDRiGa—Quasi Deterministic Radio Channel Generator, User Manual and Documentation; Fraunhofer Heinrich Hertz Institute: Berlin, Germany, 2019. [Google Scholar]
- 5G Simulator. Available online: www.quamcom.research/5gsim (accessed on 10 June 2020).
- Zaidi, A.; Athley, F.; Medbo, J.; Gustavsson, U.; Durisi, G.; Chen, X. Simulator. In 5G Physical Layer: Principles, Models and Technology Components; Academic Press Elsevier: London, UK, 2018; pp. 279–294. [Google Scholar] [CrossRef]
- Zanella, R.; Verdone, A. Pervasive Mobile and Ambient Wireless Communications: COST Action 2100; Springer Science & Business Media: London, UK, 2012. [Google Scholar]
- Nurmela, V.; Kartunen, A.; Roivainen, A.; Raschakowski, L.; Imai, T.; Jarvelainen, J.; Medbo, J.; Vihriala, J.; Meinila, J.; Haneda, K.; et al. METIS Channel Models. Available online: https://metis2020.com (accessed on 24 May 2020).
- Sun, S.; MacCartney, G.R.; Rappaport, T.S. A novel millimeter wave channel simulator and applications for 5G Wireless Communications. In Proceedings of the 2017 IEEE International Conferenceon Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–7. [Google Scholar] [CrossRef][Green Version]
- Tan, Y. Statistical Millimeter Wave Channel Modeling for 5G and Beyond. Ph.D. Thesis, Heriot-Watt University, School of Engineering and Physical Sciences, Edinburgh, UK, 2019. [Google Scholar]
- Wu, S.; Wang, C.; Aggoune, M.; You, X. A General 3-D Non-Stationary 5G Wireless Channel Model. IEEE Trans. Commun. 2018, 66/7, 3065–3078. [Google Scholar] [CrossRef]
- Stefanović, N.; Kar, A.; Mladenović, V. 5G Tool for Evaluation and Comparision of Energy Efficiency of Mobile Radio Channel Using Second Order Statistics. In Proceedings of the Internationational Conference “Energy Efficiency and Energy Saving in Technical Systems” 2020 (EEESTS-2020), Rostov-on-Don, Russian Federation, 16–17 June 2020. [Google Scholar] [CrossRef]
- 3GPP TS 38.214v16.2.0: Physical Layer Procedures for Data. Available online: www.3gpp.org/ftp/Specs/archive/38_series/38.214/ (accessed on 30 May 2020).
- Dehnie, S. Markov Chain Approximation of Rayleigh Fading Channel. In Proceedings of the 2007 IEEE International Conference on Signal Processing and Communications (ICSPC 2007), Dubai, United Arab Emirates, 24–27 November 2007; pp. 1311–1314. [Google Scholar] [CrossRef]
- Razavilar, J.; Liu, K.J.; Marcus, S.I. Jointly Optimized Bit-Rate/Delay Control Policy for Wireless Packet Networks with Fading Channels. IEEE Trans. Commun. 2002, 50, 484–494. [Google Scholar] [CrossRef][Green Version]
- Mladenovic, V.; Milosevic, D.; Lutovac, M.; Cen, Y.; Debevc, M. An Operation Reduction Using Fast Computation of an Iteration-Based Simulation Method with Microsimulation-Semi-Symbolic Analysis. Entropy 2018, 20, 62. [Google Scholar] [CrossRef][Green Version]
- Mladenovic, V.; Makov, S.; Voronin, V.; Lutovac, M. An Iteration-Based Simulation Method for Getting Semi-Symbolic Solution of Non-coherent FSK/ASK System by Using Computer Algebra Systems. Stud. Inform. Control 2016, 25, 303–312. [Google Scholar] [CrossRef][Green Version]
- Mladenovic, V.; Milosevic, D. A novel-iterative simulation method for performance analysis of non-coherent FSK/ASK systems over Rice/Rayleigh channels using the Wolfram language. Serb. J. Electr. Eng. 2016, 13, 157–174. [Google Scholar] [CrossRef]
- Mladenovic, V.; Makov, S.; Cen, Y.G.; Lutovac, M. Fast Computation of the Iteration-Based Simulation Method—Case Study of Non-coherent ASK with Shadowing. Serb. J. Electr. Eng. 2017, 14, 415–431. [Google Scholar] [CrossRef]
- Wolfram, S. An Elementary Introduction to the Wolfram Language; Wolfram Media, Inc.: Champaign City, IL, USA, 2017; ISBN 9781944183059. [Google Scholar]
Step | Pseudocode |
---|---|
1 | Input N_{samples}, N_{SC}, Δf, t_{s}, P_{t} |
2 | B= (N_{samples}−1)/2; |
3 | Generate distance matrix D=$\left|\text{}d\left[-B\right]\dots d\left[0\right]\dots d\left[B\right]\right|$ |
4 | Calculate c_{i} according to (6) for every of N_{SC} scatterers |
5 | Calculate P_{r} using (8) |
6 | Calculate scatterers magnitude vectoraaccording to (7) |
8 | f_{axis} = (start: Δf: end) |
9 | W =zeros (N_{samples}, length(f_{axis})) |
10 | LCR, AFD = zeros (length(f_{axis}), N_{samples}) |
11 | Forn=1 toN_{samples} |
12 | For b=1 to length(f_{axis}) |
13 | For s=1 to N_{SC} |
14 | Λ =c/f_{axis}(b) |
15 | W(n,b)= W(n,b) + a(s)×exp(-j×2π/λ)× D(s,n) |
16 | end |
17 | end |
18 | end |
19 | For b=1 to length(f_{axis}) |
20 | r = transpose(column(W,b)) |
21 | Calculate root mean square RMS of r |
22 | Normalize as abs(r)/RMS |
23 | Calculate level crossing rate LCR and average fade duration AFD across r |
24 | Update matrices LCR(p,1:length(LCR)) and AFD(p,1:length(AFD)) |
25 | end |
Numerology | Case A | Case B | Case C |
---|---|---|---|
SCS (kHz) | 15 | 30 | 60 |
Bandwidth (MHz) | 3.6 | 7.2 | 14.4 |
Resolution (kHz) | 180 | 360 | 720 |
Symbol duration (μs) | 66.7 | 33.3 | 16.7 |
Simulation time (4 symbols) | 200 | 100 | 50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanovic, N.; Blagojevic, M.; Pokrajac, I.; Greconici, M.; Cen, Y.; Mladenovic, V. A Symbolic Encapsulation Point as Tool for 5G Wideband Channel Cross-Layer Modeling. Entropy 2020, 22, 1151. https://doi.org/10.3390/e22101151
Stefanovic N, Blagojevic M, Pokrajac I, Greconici M, Cen Y, Mladenovic V. A Symbolic Encapsulation Point as Tool for 5G Wideband Channel Cross-Layer Modeling. Entropy. 2020; 22(10):1151. https://doi.org/10.3390/e22101151
Chicago/Turabian StyleStefanovic, Nenad, Marija Blagojevic, Ivan Pokrajac, Marian Greconici, Yigang Cen, and Vladimir Mladenovic. 2020. "A Symbolic Encapsulation Point as Tool for 5G Wideband Channel Cross-Layer Modeling" Entropy 22, no. 10: 1151. https://doi.org/10.3390/e22101151