# Does Geometric Algebra Provide a Loophole to Bell’s Theorem?

## Abstract

**:**

## 1. Introduction

## 2. The Algebra of the $2\times 2$ Complex Matrices over the Reals

## 3. Clifford Algebras over the Reals

#### Remarks on Computation

## 4. Bell’s Theorem

## 5. Geometrizing Quantum Information Theory

## 6. Christian’s Disproofs of Bell’s Theorem

#### 6.1. Christian’s First Model

#### 6.2. Christian’s Second Model

#### 6.3. The International Journal of Theoretical Physics Paper, 2015

#### 6.4. The Annals of Physics Paper, 2015

Through an administrative error, the author had not been informed.This article has been withdrawn at the request of the Editors. Soon after the publication of this paper was announced, several experts in the field contacted the Editors to report errors. After extensive review, the Editors unanimously concluded that the results are in obvious conflict with a proven scientific fact, i.e., violation of local realism that has been demonstrated not only theoretically but experimentally in recent experiments. On this basis, the Editors decided to withdraw the paper. As a consequence, pages 67–79 originally occupied by the withdrawn article are missing from the printed issue [vol. 373]. The publisher apologizes for any inconvenience this may cause.

#### 6.5. The RSOS Paper, 2018

#### 6.6. The IEEE Access Paper, 2018

#### 6.7. The Pure Mathematics Paper, 2019

## 7. Conclusions

## Funding

## Conflicts of Interest

## References

- Bell, J.S. On the Einstein Podolsky Rosen Paradox. Physics 1
**1964**, 1, 195. [Google Scholar] [CrossRef][Green Version] - Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev.
**1935**, 16, 777–780. [Google Scholar] [CrossRef][Green Version] - Bohm, D.; Aharonov, Y. Discussion of experimental proof for the paradox of Einstein, Rosen and Podolsky. Phys. Rev.
**1957**, 108, 1070–1076. [Google Scholar] [CrossRef] - Wu, C.S.; Shaknov, I. The angular correlation of scattered annihilation radiation. Phys. Rev.
**1950**, 77, 136. [Google Scholar] [CrossRef] - Christian, J. Disproof of Bell’s Theorem: Illuminating the Illusion of Entanglement; Brown Walker Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Christian, J. Disproof of Bell’s theorem by Clifford algebra valued local variables. arXiv
**2007**, arXiv:quant-ph/0703179. Available online: https://arxiv.org/abs/quant-ph/0703179 (accessed on 29 December 2019). - Christian, J. Disproof of Bell’s theorem. arXiv
**2011**, arXiv:1103.1879v1. [Google Scholar] - Christian, J. Macroscopic Observability of Spinorial Sign Changes under 2π Rotations. Int. J. Theor. Phys.
**2015**, 54, 2042–2067. [Google Scholar] [CrossRef][Green Version] - Christian, J. Local Causality in a Friedmann-Robertson-Walker Spacetime. arXiv
**2014**, arXiv:1405.2355v1. Available online: https://arxiv.org/pdf/1405.2355v1.pdf (accessed on 29 December 2019). [CrossRef][Green Version] - Christian, J. Quantum correlations are weaved by the spinors of the Euclidean primitives. R. Soc. Open Sci.
**2018**, 5, 180526. [Google Scholar] [CrossRef][Green Version] - Christian, J. Bell’s Theorem Versus Local Realism in a Quaternionic Model of Physical Space. IEEE Access
**2019**, 2019, 133388–133409. Available online: https://ieeexplore.ieee.org/document/8836453 (accessed on 29 December 2019). [CrossRef] - Christian, J. Eight-dimensional Octonion-like but Associative Normed Division Algebra. arXiv
**2019**, arXiv:1908.06172. Available online: https://arxiv.org/abs/1908.06172 (accessed on 29 December 2019). - Doran, C.; Lasenby, A. Geometric Algebra for Physicists; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Hestenes, D. A unified language for mathematics and physics. In Clifford Algebras and their Applications in Mathematical Physics; Springer: Dordrecht, The Netherlands, 1986; Volume 183, pp. 1–23. Available online: https://link.springer.com/chapter/10.1007/978-94-009-4728-3_1 (accessed on 29 December 2019).
- Hestenes, D. Clifford algebra and the interpretation of quantum mechanics. In Clifford Algebras and their Applications in Mathematical Physics; Springer: Dordrecht, The Netherlands, 1986; Volume 183, pp. 321–346. Available online: https://link.springer.com/chapter/10.1007/978-94-009-4728-3_27 (accessed on 29 December 2019).
- Dorst, L.; Fontijne, D.; Mann, S. Geometric Algebra for Computer Science; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Chappell, J.M.; Iqbal, A.; Hartnett, J.G.; Abbott, D. The Vector Algebra War: A Historical Perspective. IEEE Access
**2016**, 4, 1997–2004. Available online: https://ieeexplore.ieee.org/document/7431944 (accessed on 29 December 2019). [CrossRef][Green Version] - Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett.
**1969**, 23, 880–884. [Google Scholar] [CrossRef][Green Version] - Boole, G. An Investigation of the Laws of Thought; Walton and Maberly: London, UK, 1854. [Google Scholar]
- Cirel’son, B.S. Quantum generalizations of Bell’s inequality. Lett. Math. Phys.
**1980**, 4, 93–100. [Google Scholar] [CrossRef] - Fine, A. Hidden Variables, Joint Probability, and the Bell Inequalities. Phys. Rev. Lett.
**1982**, 48, 291–295. [Google Scholar] [CrossRef] - Gill, R.D. The triangle wave versus the cosine (how to optimally approximate EPR-B Correlations by classical systems). arXiv
**2013**, arXiv:1312.6403. Available online: https://arxiv.org/abs/1312.6403 (accessed on 29 December 2019). - Pitowsky, I. Quantum Probability–Quantum Logic; Springer: Berlin/Heidelberger, Germany, 1989; Available online: https://www.springer.com/gp/book/9783662137352 (accessed on 29 December 2019).
- Gill, R.D. Statistics, Causality and Bell’s Theorem. Stat. Sci.
**2014**, 29, 512–528. Available online: https://projecteuclid.org/euclid.ss/1421330545 (accessed on 29 December 2019). [CrossRef] - Gill, R.D. Accardi contra Bell (cum mundi): The Impossible Coupling. In Lecture Notes–Monograph Series; Institute of Mathematical Statistics: Beachwood, OH, USA, 2003; Volume 42, pp. 133–154. Available online: https://arxiv.org/abs/quant-ph/0110137 (accessed on 29 December 2019).
- Gill, R.D. Time, Finite Statistics, and Bell’s Fifth Position. arXiv
**2003**, arXiv:quant-ph/0301059. Available online: https://arxiv.org/abs/quant-ph/0301059 (accessed on 29 December 2019). - Lakatos, I. Proofs and Refutations: The Logic of Mathematical Discovery; Cambridge University Press: Cambridge, UK, 1976. [Google Scholar]
- Gill, R.D. Simple refutation of Joy Christian’s simple refutation of Bell’s simple theorem. arXiv
**2012**, arXiv:1203.1504. Available online: https://arxiv.org/abs/1203.1504 (accessed on 29 December 2019). - Gill, R.D. Macroscopic Unobservability of Spinorial Sign Changes. Int. J. Theor. Phys.
**2016**, 55, 255–257. Available online: https://link.springer.com/article/10.1007 (accessed on 29 December 2019). [CrossRef][Green Version] - Pearle, P. Hidden-variable example based upon data rejection. Phys. Rev.
**1970**, 2, 1418–1425. [Google Scholar] [CrossRef] - Gill, R.D. Pearle’s Hidden-Variable Model Revisited. Entropy
**2019**, 22, 1. [Google Scholar] [CrossRef][Green Version]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gill, R.D. Does Geometric Algebra Provide a Loophole to Bell’s Theorem? *Entropy* **2020**, *22*, 61.
https://doi.org/10.3390/e22010061

**AMA Style**

Gill RD. Does Geometric Algebra Provide a Loophole to Bell’s Theorem? *Entropy*. 2020; 22(1):61.
https://doi.org/10.3390/e22010061

**Chicago/Turabian Style**

Gill, Richard David. 2020. "Does Geometric Algebra Provide a Loophole to Bell’s Theorem?" *Entropy* 22, no. 1: 61.
https://doi.org/10.3390/e22010061