Relationship between the Transport Coefficients of Polar Substances and Entropy
Abstract
:1. Introduction
2. Equation of State and Transport Properties
3. Diffusion Coefficient
4. Viscosity Coefficient
5. Thermal Conductivity Coefficient
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van der Spoel, D.; Lindahl, E.; Hess, B.; van Buuren, A.R.; Apol, E.; Meulenhoff, P.J.; Tieleman, D.P.; Sijbers, A.L.T.M.; Feenstra, K.A.; van Drunen, R.; et al. Gromacs User Manual Version 4.5.4; The GROMACS Development Teams at the Royal Institute of Technology and Uppsala University: Uppsala, Sweden, 2010. [Google Scholar]
- CAS Databases. Available online: https://www.cas.org/about/cas-content (accessed on 20 December 2019).
- Hirschfelder, J.O.; Curtiss, C.F.; Bird, R.B. The Molecular Theory of Gases and Liquids; Wiley-Interscience: Hoboken, NJ, USA, 1964. [Google Scholar]
- Miller, C.C. The Stokes-Einstein Law for Diffusion in Solution. Proc. R. Soc. Math. Phys. Eng. Sci. 1924, 106, 724–749. [Google Scholar] [CrossRef]
- Sutherland, W. LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1905, 9, 781–785. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Der Phys. 1905, 322, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Vorob’ev, V.S. Application of the New Scaling Relations and Global Isomorphism to the Study of Liquid–Vapor Saturation Pressure. J. Phys. Chem. 2012, 116, 4248–4254. [Google Scholar] [CrossRef] [PubMed]
- Kulinskii, V.L. Global isomorphism between the Lennard-Jones fluids and the Ising model. J. Chem. Phys. 2010, 133, 034121. [Google Scholar] [CrossRef] [Green Version]
- Bulavin, L.; Cheplak, V.; Kulinskii, V.L. Global Isomorphism Approach: Main Results and Perspectives. In Springer Proceedings in Physics; Springer International Publishing: Berlin, Germany, 2015; pp. 53–75. [Google Scholar] [CrossRef]
- Ingebrigtsen, T.S.; Schrøder, T.B.; Dyre, J.C. Isomorphs in Model Molecular Liquids. J. Phys. Chem. B 2012, 116, 1018–1034. [Google Scholar] [CrossRef]
- Dyre, J.C. Isomorph theory of physical aging. J. Chem. Phys. 2018, 148, 154502. [Google Scholar] [CrossRef] [Green Version]
- Dyre, J.C. Perspective: Excess-entropy scaling. J. Chem. Phys. 2018, 149, 210901. [Google Scholar] [CrossRef] [Green Version]
- Dyakonov, G. Questions of the Similarity Theory in the Field of Physical and Chemical Processes; Publishing House of the USSR Academy of Sciences: Moscow, Russia, 1956. (In Russian) [Google Scholar]
- Usmanov, A. On an Additional Condition for the Similarity of Molecular Processes; Publishing House of the USSR Academy of Sciences: Moscow, Russia, 1959. (In Russian) [Google Scholar]
- Mukhamedzyanov, G.; Usmanov, A. Thermal Conductivity of Organic Liquids; ACS Publications: Washington, DC, USA, 1971. (In Russian) [Google Scholar]
- Rosenfeld, Y. Relation between the transport coefficients and the internal entropy of simple systems. Phys. Rev. A 1977, 15, 2545–2549. [Google Scholar] [CrossRef]
- Dzugutov, M. A universal scaling law for atomic diffusion in condensed matter. Nature 1996, 381, 137–139. [Google Scholar] [CrossRef]
- Dzugutov, M. Addendum: A universal scaling law for atomic diffusion in condensed matter. Nature 2001, 411, 720. [Google Scholar] [CrossRef] [Green Version]
- Galliero, G.; Boned, C.; Fernández, J. Scaling of the viscosity of the Lennard-Jones chain fluid model, argon, and some normal alkanes. J. Chem. Phys. 2011, 134, 064505. [Google Scholar] [CrossRef] [PubMed]
- Bell, I.H.; Messerly, R.; Thol, M.; Costigliola, L.; Dyre, J.C. Modified Entropy Scaling of the Transport Properties of the Lennard-Jones Fluid. J. Phys. Chem. B 2019, 123, 6345–6363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, I.H.; Hellmann, R.; Harvey, A.H. Zero-Density Limit of the Residual Entropy Scaling of Transport Properties. J. Chem. Eng. Data 2019. [Google Scholar] [CrossRef]
- Galliero, G.; Boned, C. Thermal conductivity of the Lennard-Jones chain fluid model. Phys. Rev. E 2009, 80. [Google Scholar] [CrossRef]
- Ojovan, M.I. Thermodynamic Parameters of Bonds in Glassy Materials from Shear Viscosity Coefficient Data. Int. J. Appl. Glass Sci. 2014, 5, 22–25. [Google Scholar] [CrossRef]
- Novak, L. Self-Diffusion Coefficient and Viscosity in Fluids. Int. J. Chem. React. Eng. 2011, 9. [Google Scholar] [CrossRef]
- Novak, L.T. Predictive Corresponding-States Viscosity Model for the Entire Fluid Region: n-Alkanes. Ind. Eng. Chem. Res. 2013, 52, 6841–6847. [Google Scholar] [CrossRef]
- Novak, L.T. Predicting Fluid Viscosity of Nonassociating Molecules. Ind. Eng. Chem. Res. 2015, 54, 5830–5835. [Google Scholar] [CrossRef]
- Novak, L.T. Fluid Viscosity-Residual Entropy Correlation. Int. J. Chem. React. Eng. 2011, 9. [Google Scholar] [CrossRef]
- Klinov, A.; Kazantsev, S.; Dyaconov, G.; Dyakonov, S. Analytical Equation of State for Lennard-Jones Fluids; Herald of The Kazan Technological University: Kazan, Russia, 2010; pp. 10–16. (In Russian) [Google Scholar]
- Vogel, E.; Jäger, B.; Hellmann, R.; Bich, E. Ab initiopair potential energy curve for the argon atom pair and thermophysical properties for the dilute argon gas. II. Thermophysical properties for low-density argon. Mol. Phys. 2010, 108, 3335–3352. [Google Scholar] [CrossRef]
- Bich, E.; Hellmann, R.; Vogel, E. Ab initiopotential energy curve for the neon atom pair and thermophysical properties for the dilute neon gas. II. Thermophysical properties for low-density neon. Mol. Phys. 2008, 106, 813–825. [Google Scholar] [CrossRef] [Green Version]
- Jäger, B.; Hellmann, R.; Bich, E.; Vogel, E. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas. J. Chem. Phys. 2016, 144, 114304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellmann, R.; Bich, E.; Vogel, E. Ab initio intermolecular potential energy surface and second pressure virial coefficients of methane. J. Chem. Phys. 2008, 128, 214303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Water Models. Available online: http://www1.lsbu.ac.uk/water/water_models.html (accessed on 20 December 2019).
- Stockmayer, W.H. Second Virial Coefficients of Polar Gases. J. Chem. Phys. 1941, 9, 398–402. [Google Scholar] [CrossRef]
- Matsunaga, N.; Nagashima, A. Prediction of the transport properties of gaseous water and its isotopes at high temperatures. J. Phys. Chem. 1983, 87, 5268–5279. [Google Scholar] [CrossRef]
- Mourits, F.M.; Rummens, F.H.A. A critical evaluation of Lennard–Jones and Stockmayer potential parameters and of some correlation methods. Can. J. Chem. 1977, 55, 3007–3020. [Google Scholar] [CrossRef] [Green Version]
- Wagner, W.; Pruß, A. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data 2002, 31, 387–535. [Google Scholar] [CrossRef] [Green Version]
- Tillner-Roth, R.; Harms-Watzenberg, F.; Baehr, H. Eine neue Fundamentalgleichung für Ammoniak. DKV Tagungsbericht 1993, 20, 167–180. [Google Scholar]
- Schroeder, J.A.; Penoncello, S.G.; Schroeder, J.S. A Fundamental Equation of State for Ethanol. J. Phys. Chem. Ref. Data 2014, 43, 043102. [Google Scholar] [CrossRef]
- Piazza, L.; Span, R. An equation of state for methanol including the association term of SAFT. Fluid Phase Equilibria 2013, 349, 12–24. [Google Scholar] [CrossRef]
- Huber, M.L.; Perkins, R.A.; Laesecke, A.; Friend, D.G.; Sengers, J.V.; Assael, M.J.; Metaxa, I.N.; Vogel, E.; Mareš, R.; Miyagawa, K. New International Formulation for the Viscosity of H2O. J. Phys. Chem. Ref. Data 2009, 38, 101–125. [Google Scholar] [CrossRef] [Green Version]
- Fenghour, A.; Wakeham, W.A.; Vesovic, V.; Watson, J.T.R.; Millat, J.; Vogel, E. The Viscosity of Ammonia. J. Phys. Chem. Ref. Data 1995, 24, 1649–1667. [Google Scholar] [CrossRef]
- Xiang, H.W.; Laesecke, A.; Huber, M.L. A New Reference Correlation for the Viscosity of Methanol. J. Phys. Chem. Ref. Data 2006, 35, 1597–1620. [Google Scholar] [CrossRef] [Green Version]
- Kiselev, S.B.; Ely, J.F.; Abdulagatov, I.M.; Huber, M.L. Generalized SAFT-DFT/DMT Model for the Thermodynamic, Interfacial, and Transport Properties of Associating Fluids: Application forn-Alkanols. Ind. Eng. Chem. Res. 2005, 44, 6916–6927. [Google Scholar] [CrossRef]
- Huber, M.L.; Perkins, R.A.; Friend, D.G.; Sengers, J.V.; Assael, M.J.; Metaxa, I.N.; Miyagawa, K.; Hellmann, R.; Vogel, E. New International Formulation for the Thermal Conductivity of H2O. J. Phys. Chem. Ref. Data 2012, 41, 033102. [Google Scholar] [CrossRef] [Green Version]
- Tufeu, R.; Ivanov, D.Y.; Garrabos, Y.; Neindre, B.L. Thermal Conductivity of Ammonia in a Large Temperature and Pressure Range Including the Critical Region. Berichte Bunsenges. Phys. Chem. 1984, 88, 422–427. [Google Scholar] [CrossRef]
- Sykioti, E.A.; Assael, M.J.; Huber, M.L.; Perkins, R.A. Reference Correlation of the Thermal Conductivity of Methanol from the Triple Point to 660 K and up to 245 MPa. J. Phys. Chem. Ref. Data 2013, 42, 043101. [Google Scholar] [CrossRef]
- Assael, M.J.; Sykioti, E.A.; Huber, M.L.; Perkins, R.A. Reference Correlation of the Thermal Conductivity of Ethanol from the Triple Point to 600 K and up to 245 MPa. J. Phys. Chem. Ref. Data 2013, 42, 023102. [Google Scholar] [CrossRef] [Green Version]
- PureEOS (julia library). Available online: https://github.com/KSTU/PureEOS.jl (accessed on 20 December 2019).
- Bell, I.H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Ind. Eng. Chem. Res. 2014, 53, 2498–2508. [Google Scholar] [CrossRef] [Green Version]
- Suárez-Iglesias, O.; Medina, I.; de los Ángeles Sanz, M.; Pizarro, C.; Bueno, J.L. Self-Diffusion in Molecular Fluids and Noble Gases: Available Data. J. Chem. Eng. Data 2015, 60, 2757–2817. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1-2, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Kutzner, C.; Páll, S.; Fechner, M.; Esztermann, A.; Groot, B.L.; Grubmüller, H. More bang for your buck: Improved use of GPU nodes for GROMACS 2018. J. Comput. Chem. 2019, 40, 2418–2431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnabel, T.; Vrabec, J.; Hasse, H. Henry’s law constants of methane, nitrogen, oxygen and carbon dioxide in ethanol from 273 to 498 K: Prediction from molecular simulation. Fluid Phase Equilibria 2005, 233, 134–143. [Google Scholar] [CrossRef] [Green Version]
- Monchick, L.; Mason, E.A. Transport Properties of Polar Gases. J. Chem. Phys. 1961, 35, 1676–1697. [Google Scholar] [CrossRef]
- Abramson, E.H. Viscosity of water measured to pressures of 6GPa and temperatures of 300 C. Phys. Rev. E 2007, 76. [Google Scholar] [CrossRef]
Substance | , K | , nm | |
---|---|---|---|
water [35] | 470 | 0.259 | 1.5 |
ammonia [36] | 309.9 | 0.3215 | 1.52 |
ethanol [36] | 385.2 | 0.3657 | 1.1 |
methanol [36] | 373.3 | 0.4299 | 0.855 |
Substance | |||
---|---|---|---|
water | 0.0 | 0.2637 | 0.7621 |
ammonia | 0.0388 | 0.3707 | 0.6264 |
methanol | 0.03364 | 0.4212 | 0.8633 |
ethanol | 0.1748 | 0.2804 | 0.8387 |
Substance | |||
---|---|---|---|
water | −0.4019 | −0.1914 | −0.6052 |
ammonia | −0.6809 | −0.151 | −0.3485 |
methanol | −0.4132 | −0.2940 | −0.7253 |
ethanol | −0.3881 | −0.2665 | −0.6644 |
Substance | ||
---|---|---|
water | −0.1803 | −0.0006337 |
ammonia | −0.3915 | −0.001032 |
methanol | −0.344 | 0.0001427 |
ethanol | −0.2914 | 0.0001376 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anashkin, I.; Dyakonov, S.; Dyakonov, G. Relationship between the Transport Coefficients of Polar Substances and Entropy. Entropy 2020, 22, 13. https://doi.org/10.3390/e22010013
Anashkin I, Dyakonov S, Dyakonov G. Relationship between the Transport Coefficients of Polar Substances and Entropy. Entropy. 2020; 22(1):13. https://doi.org/10.3390/e22010013
Chicago/Turabian StyleAnashkin, Ivan, Sergey Dyakonov, and German Dyakonov. 2020. "Relationship between the Transport Coefficients of Polar Substances and Entropy" Entropy 22, no. 1: 13. https://doi.org/10.3390/e22010013
APA StyleAnashkin, I., Dyakonov, S., & Dyakonov, G. (2020). Relationship between the Transport Coefficients of Polar Substances and Entropy. Entropy, 22(1), 13. https://doi.org/10.3390/e22010013