# Stabilization of Port Hamiltonian Chaotic Systems with Hidden Attractors by Adaptive Terminal Sliding Mode Control

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Chaotic Oscillator System with Hidden Attractor Design and Problem Formulation

#### 2.1. Chaotic Oscillator System with Hidden Attractor Design

#### 2.1.1. 2-D Chaotic Oscillator with Hidden Attractor Design

#### 2.1.2. 4D-Chaotic System with Hidden Attractor

#### 2.2. Problem Formulation

## 3. Adaptive Terminal Sliding Mode Controller Design

**Theorem**

**1.**

**Proof.**

## 4. Numerical Experiments

#### 4.1. Experiment 1

#### 4.2. Experiment 2

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Vaidyanathan, S.; Azar, A.T. Qualitative Study and Adaptive Control of a Novel 4-D Hyperchaotic System with Three Quadratic Nonlinearities. In Advances in Chaos Theory and Intelligent Control; Azar, A.T., Vaidyanathan, S., Eds.; Springer International Publishing: Cham, Germany, 2016; pp. 179–202. [Google Scholar]
- Vaidyanathan, S.; Azar, A.T. Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In Advances in Chaos Theory and Intelligent Control; Springer: Berlin, Germany, 2016; pp. 275–290. [Google Scholar]
- Azar, A.T.; Volos, C.; Gerodimos, N.A.; Tombras, G.S.; Pham, V.T.; Radwan, A.G.; Vaidyanathan, S.; Ouannas, A.; Munoz-Pacheco, J.M. A Novel Chaotic System without Equilibrium: Dynamics, Synchronization, and Circuit Realization. Complexity
**2017**, 2017, 1–11. [Google Scholar] [CrossRef] - Ouannas, A.; Azar, A.T.; Abu-Saris, R. A new type of hybrid synchronization between arbitrary hyperchaotic maps. Int. J. Mach. Learn. Cybern.
**2017**, 8, 1887–1894. [Google Scholar] [CrossRef] - Azar, A.T.; Adele, N.M.; Alain, K.S.T.; Kengne, R.; Bertrand, F.H. Multistability analysis and function projective synchronization in relay coupled oscillators. Complexity
**2018**, 2018, 1–12. [Google Scholar] [CrossRef] [Green Version] - Vaidyanathan, S.; Azar, A.T.; Sambas, A.; Singh, S.; Alain, K.S.T.; Serrano, F.E. A Novel Hyperchaotic System With Adaptive Control, Synchronization, and Circuit Simulation. In Advances in System Dynamics and Control; IGI Global: Philadelphia, PA, USA, 2018. [Google Scholar]
- Pham, V.T.; Vaidyanathan, S.; Volos, C.K.; Azar, A.T.; Hoang, T.M.; Van Yem, V. A Three-Dimensional No-Equilibrium Chaotic System: Analysis, Synchronization and Its Fractional Order Form. In Fractional Order Control and Synchronization of Chaotic Systems; Azar, A.T., Vaidyanathan, S., Ouannas, A., Eds.; Springer International Publishing: Cham, Germany, 2017; pp. 449–470. [Google Scholar]
- Vaidyanathan, S.; Azar, A.T.; Akgul, A.; Lien, C.H.; Kacar, S.; Cavusoglu, U. A memristor-based system with hidden hyperchaotic attractors, its circuit design, synchronisation via integral sliding mode control and an application to voice encryption. Int. J. Autom. Control
**2019**, 13, 644–667. [Google Scholar] [CrossRef] - Vaidyanathan, S.; Jafari, S.; Pham, V.T.; Azar, A.T.; Alsaadi, F.E. A 4-D chaotic hyperjerk system with a hidden attractor, adaptive backstepping control and circuit design. Arch. Control Sci.
**2018**, 28, 239–254. [Google Scholar] - Pham, V.T.; Vaidyanathan, S.; Volos, C.K.; Jafari, S.; Gotthans, T. A Three-Dimensional Chaotic System with Square Equilibrium and No-Equilibrium. In Fractional Order Control and Synchronization of Chaotic Systems; Azar, A.T., Vaidyanathan, S., Ouannas, A., Eds.; Springer International Publishing: Cham, Germany, 2017; pp. 613–635. [Google Scholar]
- Wang, Z.; Volos, C.; Kingni, S.T.; Azar, A.T.; Pham, V.T. Four-wing attractors in a novel chaotic system with hyperbolic sine nonlinearity. Opt. Int. J. Light Electr. Opt.
**2017**, 131, 1071–1078. [Google Scholar] [CrossRef] - Bayani, A.; Rajagopal, K.; Khalaf, A.; Jafari, S.; Leutcho, G.; Kengne, J. Dynamical analysis of a new multistable chaotic system with hidden attractor: Antimonotonicity, coexisting multiple attractors, and offset boosting. Phys. Lett. Sect. A Gen. At. Solid State Phys.
**2019**, 383, 1450–1456. [Google Scholar] [CrossRef] - Zuo, J.L.; Li, C.L. Multiple attractors and dynamic analysis of a no-equilibrium chaotic system. Optik
**2016**, 127, 7952–7957. [Google Scholar] [CrossRef] - Signing, V.; Kengne, J.; Pone, J. Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity. Chaos Solitons Fractals
**2019**, 118, 187–198. [Google Scholar] [CrossRef] - Dudkowski, D.; Jafari, S.; Kapitaniak, T.; Kuznetsov, N.V.; Leonov, G.A.; Prasad, A. Hidden attractors in dynamical systems. Phys. Rep.
**2016**, 637, 1–50. [Google Scholar] [CrossRef] - Jafari, S.; Ahmadi, A.; Khalaf, A.; Abdolmohammadi, H.; Pham, V.T.; Alsaadi, F. A new hidden chaotic attractor with extreme multi-stability. AEU Int. J. Electron. Commun.
**2018**, 89, 131–135. [Google Scholar] [CrossRef] - Kuznetsov, N.; Leonov, G. Hidden attractors in dynamical systems: Systems with no equilibria, multistability and coexisting attractors. IFAC Proc. Vol.
**2014**, 19, 5445–5454. [Google Scholar] [CrossRef] [Green Version] - Jahanshahi, H.; Yousefpour, A.; Munoz-Pacheco, J.M.; Moroz, I.; Wei, Z.; Castillo, O. A new multi-stable fractional-order four-dimensional system with self-excited and hidden chaotic attractors: Dynamic analysis and adaptive synchronization using a novel fuzzy adaptive sliding mode control method. Appl. Soft Comput.
**2020**, 87, 105943. [Google Scholar] [CrossRef] - Zhusubaliyev, Z.; Mosekilde, E.; Rubanov, V.; Nabokov, R. Multistability and hidden attractors in a relay system with hysteresis. Phys. D Nonlinear Phenom.
**2015**, 306, 6–15. [Google Scholar] [CrossRef] - Wei, Z.; Akgul, A.; Kocamaz, U.; Moroz, I.; Zhang, W. Control, electronic circuit application and fractional-order analysis of hidden chaotic attractors in the self-exciting homopolar disc dynamo. Chaos Solitons Fractals
**2018**, 111, 157–168. [Google Scholar] [CrossRef] - Wang, M.; Liao, X.; Deng, Y.; Li, Z.; Su, Y.; Zeng, Y. Dynamics, synchronization and circuit implementation of a simple fractional-order chaotic system with hidden attractors. Chaos Solitons Fractals
**2020**, 130, 109406. [Google Scholar] [CrossRef] - Dong, E.; Yuan, M.; Du, S.; Chen, Z. A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. Appl. Math. Model.
**2019**, 73, 40–71. [Google Scholar] [CrossRef] - Qi, G.; Hu, J.; Wang, Z. Modeling of a Hamiltonian conservative chaotic system and its mechanism routes from periodic to quasiperiodic, chaos and strong chaos. Appl. Math. Model.
**2020**, 78, 350–365. [Google Scholar] [CrossRef] - Cang, S.; Wu, A.; Wang, Z.; Chen, Z. On a 3-D generalized Hamiltonian model with conservative and dissipative chaotic flows. Chaos Solitons Fractals
**2017**, 99, 45–51. [Google Scholar] [CrossRef] - Miao, Y.; Hwang, I.; Liu, M.; Wang, F. Adaptive fast nonsingular terminal sliding mode control for attitude tracking of flexible spacecraft with rotating appendage. Aerosp. Sci. Technol.
**2019**, 93, 105312. [Google Scholar] [CrossRef] - Labbadi, M.; Cherkaoui, M. Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain quadrotor UAV subjected to disturbances. ISA Trans.
**2019**. [Google Scholar] [CrossRef] [PubMed] - Azar, A.T.; Serrano, F.E.; Vaidyanathan, S. Sliding Mode Stabilization and Synchronization of Fractional Order Complex Chaotic and Hyperchaotic Systems. In Mathematical Techniques of Fractional Order Systems; Advances in Nonlinear Dynamics and Chaos (ANDC); Azar, A.T., Radwan, A.G., Vaidyanathan, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 10; pp. 283–317. [Google Scholar]
- Azar, A.; Serrano, F.; Koubaa, A.; Kamal, N.; Vaidyanathan, S.; Fekik, A. Adaptive Terminal-Integral Sliding Mode Force Control of Elastic Joint Robot Manipulators in the Presence of Hysteresis. Adv. Intell. Syst. Comput.
**2020**, 1058, 266–276. [Google Scholar] - Yi, S.; Zhai, J. Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators. ISA Trans.
**2019**, 90, 41–51. [Google Scholar] [CrossRef] [PubMed] - Labbadi, M.; Cherkaoui, M. Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV. Aerosp. Sci. Technol.
**2019**, 93, 105306. [Google Scholar] [CrossRef] - Azar, A.; Serrano, F.; Flores, M.; Vaidyanathan, S.; Zhu, Q. Adaptive neural-fuzzy and backstepping controller for port-Hamiltonian systems. Int. J. Comput. Appl. Technol.
**2020**, 62, 1–12. [Google Scholar] [CrossRef] - Jost, J. Dynamical Systems; Springer: Berlin, Germany, 2005. [Google Scholar]
- Haddad, W.; Chellaboina, V. Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Azar, A.T.; Serrano, F.E.
Stabilization of Port Hamiltonian Chaotic Systems with Hidden Attractors by Adaptive Terminal Sliding Mode Control. *Entropy* **2020**, *22*, 122.
https://doi.org/10.3390/e22010122

**AMA Style**

Azar AT, Serrano FE.
Stabilization of Port Hamiltonian Chaotic Systems with Hidden Attractors by Adaptive Terminal Sliding Mode Control. *Entropy*. 2020; 22(1):122.
https://doi.org/10.3390/e22010122

**Chicago/Turabian Style**

Azar, Ahmad Taher, and Fernando E. Serrano.
2020. "Stabilization of Port Hamiltonian Chaotic Systems with Hidden Attractors by Adaptive Terminal Sliding Mode Control" *Entropy* 22, no. 1: 122.
https://doi.org/10.3390/e22010122