# Quantum Thermodynamics in the Refined Weak Coupling Limit

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Weak Coupling and Refined Weak Coupling Limit

#### 2.1. Weak Coupling Limit

#### 2.2. Refined Weak Coupling Limit

#### 2.3. Refined Weak Coupling Limit under Slowly-Varying Time-Dependent Hamiltonians

## 3. Standard Thermodynamics of Open Quantum Systems

#### 3.1. The First Law

#### 3.2. The Second Law

#### 3.3. Difficulties Beyond the Weak Coupling Limit

## 4. Thermodynamics in the Refined Weak Coupling Limit

#### 4.1. Time-Independent System Hamiltonian ${H}_{\mathcal{S}}$

- ${E}^{\mathrm{R}}\left(0\right)=E\left(0\right)$. Thus, the deviation of ${E}^{\mathrm{R}}\left(t\right)$ from $E\left(t\right)$ at finite times is unambiguously caused by the interaction term ${V}_{\mathcal{SE}}$ in the Hamiltonian.
- ${E}^{\mathrm{R}}\left(t\right)$ approaches $E\left(t\right)$ for t large. In such a case ${\Lambda}_{t}^{\mathrm{R}}$ approaches Davies’ semigroup (16), and then, ${H}_{\mathcal{S}}^{\mathrm{R}}\left(t\right)$ approaches ${H}_{\mathcal{S}}$.

#### 4.2. Time-Dependent System Hamiltonian ${H}_{\mathcal{S}}\left(t\right)$

## 5. Example: Spin-Boson Model in the Refined Weak Coupling Limit

## 6. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A. Internal Energy in the Weak Coupling Limit

## Appendix B. Calculation of the Time-Ordered Exponential for the Driven Spin-Boson Model in the Refined Weak Coupling

## References

- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Gardiner, C.W.; Zoller, P. Quantum Noise; Springer: Berlin, Germany, 2004. [Google Scholar]
- Rivas, A.; Huelga, S.F. Open Quantum Systems. An Introduction; Springer: Heidelberg, Germany, 2012. [Google Scholar]
- Gemmer, J.; Michel, M.; Mahler, G. Quantum Thermodynamics: Emergence of Thermodynamic Behavior within Composite Quantum Systems; Springer: Berlin, Germany, 2004. [Google Scholar]
- Kosloff, R. Quantum Thermodynamics: A Dynamical Viewpoint. Entropy
**2013**, 15, 2100–2128. [Google Scholar] [CrossRef] [Green Version] - Binder, F.; Correa, L.A.; Gogolin, C.; Anders, J.; Adesso, G. (Eds.) Thermodynamics in the Quantum Regime; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Davies, E.B. Markovian Master Equations. Commun. Math. Phys.
**1974**, 39, 91–110. [Google Scholar] [CrossRef] - Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G. Completely positive dynamical semigroups of N-level systems. J. Math. Phys.
**1976**, 17, 821–825. [Google Scholar] [CrossRef] - Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys.
**1976**, 48, 119–130. [Google Scholar] [CrossRef] - Chruściński, D.; Pascazio, S. A Brief History of the GKLS Equation. Open Syst. Inf. Dyn.
**2017**, 24, 1740001. [Google Scholar] [CrossRef] - Alicki, R.; Lendi, K. Quantum Dynamical Semigroups and Applications; Springer: Berlin, Germany, 1987. [Google Scholar]
- Spohn, H. Entropy production for quantum dynamical semigroups. J. Math. Phys.
**1978**, 19, 1227–1230. [Google Scholar] [CrossRef] - Spohn, H.; Lebowitz, J. Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys.
**1979**, 38, 109–142. [Google Scholar] - Alicki, R. Quantum open systems as a model of a heat engine. J. Phys A Math. Gen.
**1979**, 12, L103–L107. [Google Scholar] [CrossRef] - Alicki, R.; Gelbwaser-Klimovsky, D.; Kurizki, G. Periodically driven quantum open systems: Tutorial. arXiv
**2012**, arXiv:1205.4552. [Google Scholar] - Esposito, M.; Lindberg, K.; van den Broek, C. Entropy production as correlation between system and reservoir. New J. Phys.
**2010**, 12, 013013. [Google Scholar] [CrossRef] - Binder, F.C.; Vinjanampathy, S.; Modi, K.; Goold, J. Quantum thermodynamics of general quantum processes. Phys. Rev. E
**2015**, 91, 032119. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kato, A.; Tanimura, Y. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines. J. Chem. Phys.
**2016**, 145, 224105. [Google Scholar] [CrossRef] [PubMed] - Alipour, S.; Benatti, F.; Bakhshinezhad, F.; Afsary, M.; Marcantoni, S.; Rezakhani, A.T. Correlations in quantum thermodynamics. Sci. Rep.
**2016**, 6, 35568. [Google Scholar] [CrossRef] [PubMed] - Marcantoni, S.; Alipour, S.; Benatti, F.; Floreanini, R.; Rezakhani, A.T. Entropy production and non-Markovian dynamical maps. Sci. Rep.
**2017**, 7, 12447. [Google Scholar] [CrossRef] [PubMed] - Strasberg, P.; Schaller, G.; Brandes, T.; Esposito, M. Quantum and Information Thermodynamics: A Unifying Framework Based on Repeated Interactions. Phys. Rev. X
**2017**, 7, 021003. [Google Scholar] [CrossRef] [Green Version] - Bhattacharya, S.; Misra, A.; Mukhopadhyay, C.; Pati, A.K. Exact master equation for a spin interacting with a spin bath: Non-Markovianity and negative entropy production rate. Phys. Rev. A
**2017**, 95, 012122. [Google Scholar] [CrossRef] [Green Version] - Thomas, G.; Siddharth, H.; Banerjee, S.; Ghosh, S. Thermodynamics of non-Markovian reservoirs and heat engines. Phys. Rev. E
**2018**, 97, 062108. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Strasberg, P.; Esposito, M. Non-Markovianity and negative entropy production rates. Phys. Rev. E
**2019**, 99, 012120. [Google Scholar] [CrossRef] [Green Version] - Gelin, M.F.; Thoss, M. Thermodynamics of a subensemble of a canonical ensemble. Phys. Rev. E
**2009**, 79, 051121. [Google Scholar] [CrossRef] [Green Version] - Seifert, U. First and second law of thermodynamics at strong coupling. Phys. Rev. Lett.
**2016**, 116, 020601. [Google Scholar] [CrossRef] - Hsiang, J.-T.; Hu, B.-L. Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations. Entropy
**2018**, 20, 423. [Google Scholar] [CrossRef] - Alicki, R. Master equations for a damped nonlinear oscillator and the validity of the Markovian approximation. Phys. Rev. A
**1989**, 40, 4077. [Google Scholar] [CrossRef] - Schaller, G.; Brandes, T. Preservation of positivity by dynamical coarse graining. Phys. Rev. A
**2008**, 78, 022106. [Google Scholar] [CrossRef] [Green Version] - Benatti, F.; Floreanini, R.; Marzolino, U. Environment induced entanglement in a refined weak-coupling limit. EPL
**2009**, 88, 20011. [Google Scholar] [CrossRef] - Rivas, A. Refined weak-coupling limit: Coherence, entanglement, and non-Markovianity. Phys. Rev. A
**2017**, 95, 042104. [Google Scholar] [CrossRef] [Green Version] - Merkli, M.; Könenberg, M. Completely positive dynamical semigroups and quantum resonance theory. Lett. Math. Phys.
**2017**, 107, 1215–1233. [Google Scholar] [Green Version] - Davies, E.B.; Spohn, H. Open quantum systems with time-dependent Hamiltonians and their linear response. J. Stat. Phys.
**1978**, 19, 511–523. [Google Scholar] [CrossRef] - Benatti, F.; Floreanini, R.; Piani, M. Nonpositive evolutions in open system dynamics. Phys. Rev. A
**2003**, 67, 042110. [Google Scholar] [CrossRef] [Green Version] - Benatti, F.; Floreanini, R.; Breteaux, S. Slipped nonpositive reduced dynamics and entanglement. Laser Phys.
**2006**, 16, 1395. [Google Scholar] [CrossRef] - Anderloni, S.; Benatti, F.; Floreanini, R. Redfield reduced dynamics and entanglement. J. Phys. A Math. Theor.
**2007**, 40, 1625. [Google Scholar] [CrossRef] - Schaller, G.; Zedler, P.; Brandes, T. Systematic perturbation theory for dynamical coarse-graining. Phys. Rev. A
**2009**, 79, 032110. [Google Scholar] [CrossRef] [Green Version] - Snider, R.F. Perturbation Variation Methods for a Quantum Boltzmann Equation. J. Math. Phys.
**1964**, 5, 1580–1587. [Google Scholar] [CrossRef] - Wilcox, R.M. Exponential Operators and Parameter Differentiation in Quantum Physics. J. Math. Phys.
**1967**, 8, 962–982. [Google Scholar] [CrossRef] - Rivas, A.; Huelga, S.F.; Plenio, M.B. Quantum non-Markovianity: Characterization, quantification and detection. Rep. Prog. Phys.
**2014**, 77, 094001. [Google Scholar] [CrossRef] [PubMed] - Breuer, H.-P.; Laine, E.-M.; Piilo, J.; Vacchini, B. Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys.
**2016**, 88, 021002. [Google Scholar] [CrossRef] - De Vega, I.; Alonso, D. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys.
**2017**, 89, 015001. [Google Scholar] [CrossRef] [Green Version] - Spohn, H. An algebraic condition for the approach to equilibrium of an open N-level system. Lett. Math. Phys.
**1977**, 2, 33–38. [Google Scholar] [CrossRef] - Wolf, M. Quantum Channels & Operations: Guided Tour. 2012. Available online: https://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf (accessed on 25 July 2019).
- Lindblad, G. Completely positive maps and entropy inequalities. Commun. Math. Phys.
**1975**, 40, 147–151. [Google Scholar] [CrossRef] - Uhlmann, A. Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Commun. Math. Phys.
**1977**, 54, 21–32. [Google Scholar] [CrossRef] - Müller-Hermes, A.; Reeb, D. Monotonicity of the Quantum Relative Entropy Under Positive Maps. Ann. Henri Poincaré
**2017**, 18, 1777–1788. [Google Scholar] [CrossRef] [Green Version] - Das, S.; Khatri, S.; Siopsis, G.; Wilde, M.M. Fundamental limits on quantum dynamics based on entropy change. J. Math. Phys.
**2018**, 59, 012205. [Google Scholar] [CrossRef] [Green Version] - Rivas, A.; Plato, A.D.K.; Huelga, S.F.; Plenio, M.B. Markovian master equations: A critical study. New J. Phys.
**2010**, 12, 113032. [Google Scholar] [CrossRef] - Puri, R.R. Mathematical Methods of Quantum Optics; Springer: Berlin, Germany, 2001. [Google Scholar]

**Figure 1.**Results for the entropy production (left column) and internal energy (right column) for the spin-boson model under the refined weak coupling limit (solid lines) and the Davies semigroup dynamics of the weak coupling limit (same color, dashed lines). These are calculated under three different system initial conditions ${\rho}_{\mathcal{S}}\left(0\right)=|e\rangle \langle e|$, ${\rho}_{\mathcal{S}}\left(0\right)=|g\rangle \langle g|$, and ${\rho}_{\mathcal{S}}\left(0\right)=|+\rangle {}_{y}\langle +|$, which are depicted in the first, second, and third row, respectively. The bath is assumed to have an Ohmic spectral density $J\left(\omega \right)=\alpha \omega exp(-\omega /{\omega}_{c})$ with $\alpha =0.05$ and ${\omega}_{c}=5$, in units of ${\omega}_{0}$. The different bath temperatures are highlighted by different colors. As expected, convergence for large time is obtained.

**Figure 2.**Results for the spin-boson model with diagonal driving ${H}_{\mathcal{S}}\left(t\right)={\textstyle \frac{{\omega}_{0}\left(t\right)}{2}}{\sigma}_{z}$ under the adiabatically-deformed refined and Davies weak coupling limit (same color, dashed lines). The entropy production (top left column), power (bottom left column), and internal energy (top right column) are plotted for three different bath temperatures. The internal energy for different values of the modulation frequency at $T=1$ is also depicted (bottom right column) showing convergence to the refined weak coupling result for constant ${H}_{\mathcal{S}}$ ($\nu =0$, blue dotted line). These results are calculated for the system initially prepared in the ground state ${\rho}_{\mathcal{S}}\left(0\right)=|g\rangle \langle g|$. As in Figure 2, the bath is assumed to have an Ohmic spectral density $J\left(\omega \right)=\alpha \omega exp(-\omega /{\omega}_{c})$ with $\alpha =0.05$ and ${\omega}_{c}=5$, in units of ${\omega}_{0}$.

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rivas, Á.
Quantum Thermodynamics in the Refined Weak Coupling Limit. *Entropy* **2019**, *21*, 725.
https://doi.org/10.3390/e21080725

**AMA Style**

Rivas Á.
Quantum Thermodynamics in the Refined Weak Coupling Limit. *Entropy*. 2019; 21(8):725.
https://doi.org/10.3390/e21080725

**Chicago/Turabian Style**

Rivas, Ángel.
2019. "Quantum Thermodynamics in the Refined Weak Coupling Limit" *Entropy* 21, no. 8: 725.
https://doi.org/10.3390/e21080725