Natural Convection and Irreversibility Evaluation in a Cubic Cavity with Partial Opening in Both Top and Bottom Sides
Abstract
1. Introduction
2. Physical Model
3. Mathematical Formulation
4. Verification and Grid Sensitive Study
5. Results and Discussion
6. Conclusions
- Heat transfer enhances with increasing the opening ratios and Rayleigh numbers.
- The flow field can be controlled in a cavity with the width of opening part. Both the dimension and location of circulation cells can be controlled.
- The novelty of this work was to undertake an analysis of the natural cooling and natural ventilation problem of a model room. Thus, the results can be used for building ventilation.
- As expected, the flow is more pronounced near of heated part compared to other regions.
- The obtained results can be used for some kinds of filters or heating and cooling systems.
- Increasing the opening part increases the entropy generation almost linearly for lower values of the Rayleigh number.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Cp | Specific heat at constant pressure (J/kg·K) |
d | Dimensionless opening width |
g | Gravitational acceleration (m/s2) |
h | Dimensionless opening length, h’/l’ |
k | Thermal conductivity (W/m·K) |
l | Dimensionless cavity width |
Nu | Local Nusselt number |
Nuav | Average Nusselt number |
Pr | Prandtl number |
Ra | Rayleigh number |
t | Dimensionless time () |
T | Dimensionless temperature [ |
Cold temperature (K) | |
Hot temperature (K) | |
Dimensionless velocity vector () | |
x, y, z | Dimensionless Cartesian coordinates (, , ) |
Greek Symbols | |
Thermal diffusivity (m2/s) | |
Thermal expansion coefficient (1/K) | |
Density (kg/m3) | |
Dynamic viscosity (kg/m·s) | |
Kinematic viscosity (m2/s) | |
Dimensionless vector potential () | |
Dimensionless vorticity () | |
Dimensionless temperature difference | |
Subscripts | |
av | Average |
x, y, z | Cartesian coordinates |
References
- Abib, A.H.; Jaluria, Y. Numerical Simulation of the buoyancy-induced flow in a partially open enclosure. Numer. Heat Transf. 1988, 14, 235–254. [Google Scholar] [CrossRef]
- Polat, O.; Bilgen, E. Laminar natural convection in inclined open shallow cavities. Int. J. Therm. Sci. 2002, 41, 360–368. [Google Scholar] [CrossRef]
- Bilgen, E.; Oztop, H. Natural convection heat transfer in partially open inclined square cavities. Int. J. Heat Mass Transf. 2005, 48, 1470–1479. [Google Scholar] [CrossRef]
- Bondareva, N.S.; Sheremet, M.A.; Oztop, H.F.; Abu-Hamdeh, N. Heatline visualization of natural convection in a thick walled open cavity filled with a nanofluid. Int. J. Heat Mass Transf. 2017, 109, 175–186. [Google Scholar] [CrossRef]
- Koufi, L.; Younsi, Z.; Cherif, Y.; Naji, H. Numerical investigation of turbulent mixed convection in an open cavity: Effect of inlet and outlet openings. Int. J. Therm. Sci. 2017, 116, 103–117. [Google Scholar] [CrossRef]
- Malekshah, E.H.; Salari, M. Experimental and numerical investigation of natural convection in a rectangular cuboid filled by two immiscible fluids. Exp. Therm. Fluid Sci. 2017, 85, 388–398. [Google Scholar] [CrossRef]
- Singh, D.K.; Singh, S.N. Combined free convection and surface radiation in tilted open cavity. Int. J. Therm. Sci. 2016, 107, 111–120. [Google Scholar] [CrossRef]
- Sheikholeslami, M. Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method. J. Mol. Liq. 2017, 234, 364–374. [Google Scholar] [CrossRef]
- Bondareva, N.S.; Sheremet, M.A.; Oztop, H.F.; Abu-Hamdeh, N. Heatline visualization of MHD natural convection in an inclined wavy open porous cavity filled with a nanofluid with a local heater. Int. J. Heat Mass Transf. 2016, 99, 872–881. [Google Scholar] [CrossRef]
- Oztop, H.F.; Kolsi, L.; Alghamdi, A.; Abu-Hamdeh, N.; Borjini, M.N.; Aissia, H.B. Numerical analysis of entropy generation due to natural convection in three-dimensional partially open enclosures. J. Taiwan Inst. Chem. Eng. 2017, 75, 131–140. [Google Scholar] [CrossRef]
- Oztop, H.F.; Al-Salem, K.; Varol, Y.; Pop, I. Natural convection heat transfer in a partially opened cavity filled with porous media. Int. J. Heat Mass Transf. 2011, 54, 2253–2261. [Google Scholar] [CrossRef]
- Hinojosa, J.F.; Buentello, D.; Xamán, J.; Tello, M.P. The effect of surface thermal radiation on entropy generation in an open cavity with natural convection. Int. Commun. Heat Mass Transf. 2017, 81, 164–174. [Google Scholar] [CrossRef]
- Hussain, A.K.; Mustafa, A.W. Natural convection in fully open parallelogrammic cavity filled with Cu–water nanofluid and heated locally from its bottom wall. Therm. Sci. Eng. Prog. 2017, 1, 66–77. [Google Scholar] [CrossRef]
- Singh, D.K.; Singh, S.N. Conjugate free convection with surface radiation in open top cavity. Int. J. Heat Mass Transf. 2015, 89, 444–453. [Google Scholar] [CrossRef]
- Bilgen, E.; Muftuoglu, A. Natural convection in an open square cavity with slots. Int. Commun. Heat Mass Transf. 2008, 35, 896–900. [Google Scholar] [CrossRef]
- Prakash, M.; Kedare, S.B.; Nayak, J.K. Numerical study of natural convection loss from open cavities. Int. J. Therm. Sci. 2012, 51, 23–30. [Google Scholar] [CrossRef]
- González, M.M.; Hinojosa, J.F.; Villafán-Vidales, H.I.; Bautista-Orozco, A.; Estrada, C.A. Theoretical and experimental study of natural convection with surface thermal radiation in a side open cavity. Appl. Therm. Eng. 2015, 75, 1176–1186. [Google Scholar] [CrossRef]
- Mohamad, A.A.; El-Ganaoui, M.; Bennacer, R. Lattice Boltzmann simulation of natural convection in an open ended cavity. Int. J. Therm. Sci. 2009, 48, 1870–1875. [Google Scholar] [CrossRef]
- Zamzari, F.; Mehrez, Z.; Cafsi, A.E.; Belghith, A.; Quéré, P.L. Numerical investigation of entropy generation and heat transfer of pulsating flow in a horizontal channel with an open cavity. J. Hydrodyn. 2017, 29, 632–646. [Google Scholar] [CrossRef]
- Mehrez, Z.; Bouterra, M.; Cafsi, A.E.; Belghith, A. Heat transfer and entropy generation analysis of nanofluids flow in an open cavity. Comput. Fluids 2015, 374, 214–224. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Mohammadi, F.; Abbasbandy, S.; Alhuthali, M.S. Entropy generation analysis for stagnation point flow in a porous medium over a permeable stretching surface. J. Appl. Fluid Mech. 2015, 8, 753–765. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Bhatti, M.M.; Abbas, M.A.; Ali, M.E.-S. Entropy generation on MHD blood flow of nanofluid due to peristalticwaves. Entropy 2016, 18, 117. [Google Scholar] [CrossRef]
- Abbas, M.A.; Bai, Y.; Rashidi, M.M.; Bhatti, M.M. Analysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant walls. Entropy 2016, 18, 90. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Nasiri, M.; Shadloo, M.S.; Yang, Z. Entropy Generation in a Circular Tube Heat Exchanger Using Nanofluids: Effects of Different Modeling Approaches. Heat Transf. Eng. 2017, 38, 853–866. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Abbas, T.; Rashidi, M.M. Numerical study of entropy generation with nonlinear thermal radiation on magnetohydrodynamics non-newtonian nanofluid through a porous shrinking sheet. J. Magn. 2016, 21, 468–475. [Google Scholar] [CrossRef]
- Abbas, T.; Ayub, M.; Bhatti, M.M.; Rashidi, M.M.; Ali, M.-S. Entropy generation on nanofluid flow through a horizontal Riga plate. Entropy 2016, 18, 223. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, Y.; Qian, Y. Numerical study on entropy generation in thermal convection with differentially discrete heat boundary conditions. Entropy 2018, 20, 351. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, Z.; Qian, Y. A Numerical Study on Entropy Generation in Two-Dimensional Rayleigh-B´enard Convection at Different Prandtl Number. Entropy 2017, 19, 433. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, Z.; Qian, Y.; Guo, W. Study on Bifurcation and Dual Solutions in Natural Convection in a Horizontal Annulus with Rotating Inner Cylinder Using Thermal Immersed Boundary-Lattice Boltzmann Method. Entropy 2018, 20, 733. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, H.; Lin, Z.; Wang, Z.; Qian, Y. A novel two-dimensional coupled lattice Boltzmann model for thermal incompressible flows. Appl. Math. Comput. 2018, 339, 556–567. [Google Scholar] [CrossRef]
- Kumar, P.; Eswaran, V. A Numerical Simulation of Combined Radiation and Natural Convection in a Differential Heated Cubic Cavity. J. Heat Transf. 2009, 132, 023501. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Y.; Guo, Z. Numerical study of three-dimensional natural convection in a cubical cavity at high Rayleigh numbers. Int. J. Heat Mass Transf. 2017, 113, 217–228. [Google Scholar] [CrossRef]
- Wen, B.; Chini, G.P. Inclined porous medium convection at large Rayleigh number. J. Fluid Mech. 2018, 837, 670–702. [Google Scholar] [CrossRef]
- Wakashima, S.; Saitoh, T.S. Benchmark solutions for natural convection in a cubic cavity using the high-order time–space method. Int. J. Heat Mass Transf. 2003, 47, 853–864. [Google Scholar] [CrossRef]
Ra | (center) | (center) | |
---|---|---|---|
104 | 0.05528 (0.05492) | 1.1063 (1.1018) | 2.062 (2.062) |
105 | 0.034 (0.03403) | 0.262 (0.2573) | 4.378 (4.366) |
106 | 0.01972 (0.01976) | 0.1284 (0.1366) | 8.618 (8.6097) |
Grid | Nuavg | |
---|---|---|
613 | 7.62 | 135.442 |
713 | 7.6571 | 137.565 |
813 | 7.71246 | 141.871 |
913 | 7.724 | 142.913 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oztop, H.F.; A. Almeshaal, M.; Kolsi, L.; Rashidi, M.M.; E. Ali, M. Natural Convection and Irreversibility Evaluation in a Cubic Cavity with Partial Opening in Both Top and Bottom Sides. Entropy 2019, 21, 116. https://doi.org/10.3390/e21020116
Oztop HF, A. Almeshaal M, Kolsi L, Rashidi MM, E. Ali M. Natural Convection and Irreversibility Evaluation in a Cubic Cavity with Partial Opening in Both Top and Bottom Sides. Entropy. 2019; 21(2):116. https://doi.org/10.3390/e21020116
Chicago/Turabian StyleOztop, Hakan F., Mohammed A. Almeshaal, Lioua Kolsi, Mohammed Mehdi Rashidi, and Mohamed E. Ali. 2019. "Natural Convection and Irreversibility Evaluation in a Cubic Cavity with Partial Opening in Both Top and Bottom Sides" Entropy 21, no. 2: 116. https://doi.org/10.3390/e21020116
APA StyleOztop, H. F., A. Almeshaal, M., Kolsi, L., Rashidi, M. M., & E. Ali, M. (2019). Natural Convection and Irreversibility Evaluation in a Cubic Cavity with Partial Opening in Both Top and Bottom Sides. Entropy, 21(2), 116. https://doi.org/10.3390/e21020116