# Efficient High-Dimensional Quantum Key Distribution with Hybrid Encoding

^{1}

^{2}

^{3}

^{4}

^{*}

*Entropy*

**2019**,

*21*(1), 80; https://doi.org/10.3390/e21010080 (registering DOI)

## Abstract

**:**

## 1. Introduction

## 2. Schematic Description

## 3. Experimental Implementation

## 4. Security Analysis

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 9–12 December 1984; pp. 175–179. [Google Scholar] [CrossRef]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett.
**1991**, 67, 661–663. [Google Scholar] [CrossRef] [PubMed] - Deutsch, D.; Ekert, A.; Jozsa, R.; Macchiavello, C.; Popescu, S.; Sanpera, A. Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. Phys. Rev. Lett.
**1996**, 77, 2818–2821. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Mayers, D. Unconditional security in quantum cryptography. J. ACM
**2001**, 48, 351–406. [Google Scholar] [CrossRef] [Green Version] - Shor, P.W.; Preskill, J. Simple Proof of Security of the BB84 Quantum Key Distribution Protocol. Phys. Rev. Lett.
**2000**, 85, 441–444. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Devetak, I.; Winter, A. Distillation of secret key and entanglement from quantum states. Proc. R. Soc. A Math. Phys. Eng. Sci.
**2005**, 461, 207–235. [Google Scholar] [CrossRef] [Green Version] - Koashi, M. Unconditional security of quantum key distribution and the uncertainty principle. J. Phys. Conf. Ser.
**2006**, 36, 98–102. [Google Scholar] [CrossRef] [Green Version] - Koashi, M. Simple security proof of quantum key distribution based on complementarity. New J. Phys.
**2009**, 11, 045018. [Google Scholar] [CrossRef] [Green Version] - Brassard, G.; Lütkenhaus, N.; Mor, T.; Sanders, B.C. Limitations on Practical Quantum Cryptography. Phys. Rev. Lett.
**2000**, 85, 1330–1333. [Google Scholar] [CrossRef] [Green Version] - Makarov, V.; Hjelme, D.R. Faked states attack on quantum cryptosystems. J. Mod. Opt.
**2005**, 52, 691–705. [Google Scholar] [CrossRef] [Green Version] - Makarov, V.; Anisimov, A.; Skaar, J. Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A
**2006**, 74, 022313. [Google Scholar] [CrossRef] - Lydersen, L.; Wiechers, C.; Wittmann, C.; Elser, D.; Skaar, J.; Makarov, V. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics
**2010**, 4, 686–689. [Google Scholar] [CrossRef] [Green Version] - Huang, A.; Sajeed, S.; Chaiwongkhot, P.; Soucarros, M.; Legre, M.; Makarov, V. Testing Random-Detector-Efficiency Countermeasure in a Commercial System Reveals a Breakable Unrealistic Assumption. IEEE J. Quantum Electron.
**2016**, 52, 8000211. [Google Scholar] [CrossRef] - Qi, B.; Fung, C.F.; Lo, H.; Ma, X. Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput.
**2007**, 7, 73–82. [Google Scholar] - Bugge, A.N.; Sauge, S.; Ghazali, A.M.M.; Skaar, J.; Lydersen, L.; Makarov, V. Laser Damage Helps the Eavesdropper in Quantum Cryptography. Phys. Rev. Lett.
**2014**, 112, 070503. [Google Scholar] [CrossRef] [PubMed] - Lo, H.K.; Curty, M.; Qi, B. Measurement-Device-Independent Quantum Key Distribution. Phys. Rev. Lett.
**2012**, 108, 130503. [Google Scholar] [CrossRef] [PubMed] - Żukowski, M.; Zeilinger, A.; Horne, M.A.; Ekert, A.K. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett.
**1993**, 71, 4287–4290. [Google Scholar] [CrossRef] [PubMed] - Lütkenhaus, N.; Calsamiglia, J.; Suominen, K.A. Bell measurements for teleportation. Phys. Rev. A
**1999**, 59, 3295–3300. [Google Scholar] [CrossRef] [Green Version] - Calsamiglia, J. Generalized measurements by linear elements. Phys. Rev. A
**2002**, 65, 030301. [Google Scholar] [CrossRef] - Grice, W.P. Arbitrarily complete Bell-state measurement using only linear optical elements. Phys. Rev. A
**2011**, 84, 042331. [Google Scholar] [CrossRef] - Zaidi, H.A.; van Loock, P. Beating the One-Half Limit of Ancilla-Free Linear Optics Bell Measurements. Phys. Rev. Lett.
**2013**, 110, 260501. [Google Scholar] [CrossRef] [PubMed] - Lee, S.W.; Jeong, H. Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A
**2013**, 87, 022326. [Google Scholar] [CrossRef] - Lee, S.W.; Park, K.; Ralph, T.C.; Jeong, H. Nearly Deterministic Bell Measurement for Multiphoton Qubits and its Application to Quantum Information Processing. Phys. Rev. Lett.
**2015**, 114, 113603. [Google Scholar] [CrossRef] [PubMed] - Lee, S.W.; Park, K.; Ralph, T.C.; Jeong, H. Nearly deterministic Bell measurement with multiphoton entanglement for efficient quantum-information processing. Phys. Rev. A
**2015**, 92, 052324. [Google Scholar] [CrossRef] - Lim, C.C.W.; Korzh, B.; Martin, A.; Bussières, F.; Thew, R.; Zbinden, H. Detector-device-independent quantum key distribution. Appl. Phys. Lett.
**2014**, 105, 221112. [Google Scholar] [CrossRef] [Green Version] - Liang, W.Y.; Li, M.; Yin, Z.Q.; Chen, W.; Wang, S.; An, X.B.; Guo, G.C.; Han, Z.F. Simple implementation of quantum key distribution based on single-photon Bell-state measurement. Phys. Rev. A
**2015**, 92, 012319. [Google Scholar] [CrossRef] - González, P.; Rebón, L.; Ferreira da Silva, T.; Figueroa, M.; Saavedra, C.; Curty, M.; Lima, G.; Xavier, G.B.; Nogueira, W.A.T. Quantum key distribution with untrusted detectors. Phys. Rev. A
**2015**, 92, 022337. [Google Scholar] [CrossRef] - Boaron, A.; Korzh, B.; Houlmann, R.; Boso, G.; Lim, C.C.W.; Martin, A.; Zbinden, H. Detector-device-independent quantum key distribution: Security analysis and fast implementation. J. Appl. Phys.
**2016**, 120, 063101. [Google Scholar] [CrossRef] [Green Version] - Sajeed, S.; Huang, A.; Sun, S.; Xu, F.; Makarov, V.; Curty, M. Insecurity of Detector-Device-Independent Quantum Key Distribution. Phys. Rev. Lett.
**2016**, 117, 250505. [Google Scholar] [CrossRef] - Navez, P.; Cerf, N.J. Cloning a real d-dimensional quantum state on the edge of the no-signaling condition. Phys. Rev. A
**2003**, 68, 032313. [Google Scholar] [CrossRef] - Bouchard, F.; Fickler, R.; Boyd, R.W.; Karimi, E. High-dimensional quantum cloning and applications to quantum hacking. Sci. Adv.
**2017**, 3. [Google Scholar] [CrossRef] - Cerf, N.J.; Bourennane, M.; Karlsson, A.; Gisin, N. Security of Quantum Key Distribution Using d-Level Systems. Phys. Rev. Lett.
**2002**, 88, 127902. [Google Scholar] [CrossRef] [PubMed] - Durt, T.; Kaszlikowski, D.; Chen, J.L.; Kwek, L.C. Security of quantum key distributions with entangled qudits. Phys. Rev. A
**2004**, 69, 032313. [Google Scholar] [CrossRef] - Sheridan, L.; Scarani, V. Security proof for quantum key distribution using qudit systems. Phys. Rev. A
**2010**, 82, 030301. [Google Scholar] [CrossRef] - Ferenczi, A.; Lütkenhaus, N. Symmetries in quantum key distribution and the connection between optimal attacks and optimal cloning. Phys. Rev. A
**2012**, 85, 052310. [Google Scholar] [CrossRef] - Coles, P.J.; Metodiev, E.M.; Lütkenhaus, N. Numerical approach for unstructured quantum key distribution. Nat. Commun.
**2016**, 7, 11712. [Google Scholar] [CrossRef] [PubMed] - Pivoluska, M.; Huber, M.; Malik, M. Layered quantum key distribution. Phys. Rev. A
**2018**, 97, 032312. [Google Scholar] [CrossRef] [Green Version] - Jo, Y.; Son, W. Key-rate enhancement using qutrit states for quantum key distribution with askew aligned sources. Phys. Rev. A
**2016**, 94, 052316. [Google Scholar] [CrossRef] - Hwang, W.Y.; Su, H.Y.; Bae, J. N-dimensional measurement-device-independent quantum key distribution with N + 1 un-characterized sources: zero quantum-bit-error-rate case. Sci. Rep.
**2016**, 6, 30036. [Google Scholar] [CrossRef] [Green Version] - Dellantonio, L.; Sørensen, A.S.; Bacco, D. High-dimensional measurement-device-independent quantum key distribution on two-dimensional subspaces. Phys. Rev. A
**2018**, 98, 062301. [Google Scholar] [CrossRef] - Bechmann-Pasquinucci, H.; Tittel, W. Quantum cryptography using larger alphabets. Phys. Rev. A
**2000**, 61, 062308. [Google Scholar] [CrossRef] - Ali-Khan, I.; Broadbent, C.J.; Howell, J.C. Large-Alphabet Quantum Key Distribution Using Energy-Time Entangled Bipartite States. Phys. Rev. Lett.
**2007**, 98, 060503. [Google Scholar] [CrossRef] - Mower, J.; Zhang, Z.; Desjardins, P.; Lee, C.; Shapiro, J.H.; Englund, D. High-dimensional quantum key distribution using dispersive optics. Phys. Rev. A
**2013**, 87, 062322. [Google Scholar] [CrossRef] - Nunn, J.; Wright, L.J.; Söller, C.; Zhang, L.; Walmsley, I.A.; Smith, B.J. Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion. Opt. Express
**2013**, 21, 15959–15973. [Google Scholar] [CrossRef] [PubMed] - Bunandar, D.; Zhang, Z.; Shapiro, J.H.; Englund, D.R. Practical high-dimensional quantum key distribution with decoy states. Phys. Rev. A
**2015**, 91, 022336. [Google Scholar] [CrossRef] - Gröblacher, S.; Jennewein, T.; Vaziri, A.; Weihs, G.; Zeilinger, A. Experimental quantum cryptography with qutrits. New J. Phys.
**2006**, 8, 75. [Google Scholar] [CrossRef] - Mirhosseini, M.; Magaña-Loaiza, O.S.; O’Sullivan, M.N.; Rodenburg, B.; Malik, M.; Lavery, M.P.J.; Padgett, M.J.; Gauthier, D.J.; Boyd, R.W. High-dimensional quantum cryptography with twisted light. New J. Phys.
**2015**, 17, 033033. [Google Scholar] [CrossRef] - Sit, A.; Bouchard, F.; Fickler, R.; Gagnon-Bischoff, J.; Larocque, H.; Heshami, K.; Elser, D.; Peuntinger, C.; Günthner, K.; Heim, B.; Marquardt, C.; Leuchs, G.; Boyd, R.W.; Karimi, E. High-dimensional intracity quantum cryptography with structured photons. Optica
**2017**, 4, 1006–1010. [Google Scholar] [CrossRef] [Green Version] - Wang, F.; Zeng, P.; Wang, X.; Gao, H.; Li, F.; Zhang, P. Towards practical high-speed high dimensional quantum key distribution using partial mutual unbiased basis of photon’s orbital angular momentum. arXiv, 2018; arXiv:quant-ph/1801.06582. [Google Scholar]
- Bouchard, F.; Heshami, K.; England, D.; Fickler, R.; Boyd, R.W.; Englert, B.G.; Sánchez-Soto, L.L.; Karimi, E. Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons. Quantum
**2018**, 2, 111. [Google Scholar] [CrossRef] - Yang, X.; Wei, K.; Ma, H.; Liu, H.; Yin, Z.; Cao, Z.; Wu, L. Detector-device-independent quantum secret sharing with source flaws. Sci. Rep.
**2018**, 8, 5728. [Google Scholar] [CrossRef] - Erhard, M.; Fickler, R.; Krenn, M.; Zeilinger, A. Twisted photons: New quantum perspectives in high dimensions. Light Sci. Appl.
**2018**, 7, 17146. [Google Scholar] [CrossRef] - Mair, A.; Vaziri, A.; Weihs, G.; Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature
**2001**, 412, 313–316. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Żukowski, M.; Zeilinger, A.; Horne, M.A. Realizable higher-dimensional two-particle entanglements via multiport beam splitters. Phys. Rev. A
**1997**, 55, 2564–2579. [Google Scholar] [CrossRef] - Bazhenov, V.; Soskin, M.; Vasnetsov, M. Screw Dislocations in Light Wavefronts. J. Mod. Opt.
**1992**, 39, 985–990. [Google Scholar] [CrossRef] - Mirhosseini, M.; na Loaiza, O.S.M.; Chen, C.; Rodenburg, B.; Malik, M.; Boyd, R.W. Rapid generation of light beams carrying orbital angular momentum. Opt. Express
**2013**, 21, 30196–30203. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Larocque, H.; Gagnon-Bischoff, J.; Bouchard, F.; Fickler, R.; Upham, J.; Boyd, R.W.; Karimi, E. Arbitrary optical wavefront shaping via spin-to-orbit coupling. J. Opt.
**2016**, 18, 124002. [Google Scholar] [CrossRef] [Green Version] - Larocque, H.; Gagnon-Bischoff, J.; Mortimer, D.; Zhang, Y.; Bouchard, F.; Upham, J.; Grillo, V.; Boyd, R.W.; Karimi, E. Generalized optical angular momentum sorter and its application to high-dimensional quantum cryptography. Opt. Express
**2017**, 25, 19832–19843. [Google Scholar] [CrossRef] [PubMed] - Leach, J.; Padgett, M.J.; Barnett, S.M.; Franke-Arnold, S.; Courtial, J. Measuring the Orbital Angular Momentum of a Single Photon. Phys. Rev. Lett.
**2002**, 88, 257901. [Google Scholar] [CrossRef] - Krenn, M.; Malik, M.; Fickler, R.; Lapkiewicz, R.; Zeilinger, A. Automated Search for new Quantum Experiments. Phys. Rev. Lett.
**2016**, 116, 090405. [Google Scholar] [CrossRef] - Schlederer, F.; Krenn, M.; Fickler, R.; Malik, M.; Zeilinger, A. Cyclic transformation of orbital angular momentum modes. New J. Phys.
**2016**, 18, 043019. [Google Scholar] [CrossRef] [Green Version] - Babazadeh, A.; Erhard, M.; Wang, F.; Malik, M.; Nouroozi, R.; Krenn, M.; Zeilinger, A. High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments. Phys. Rev. Lett.
**2017**, 119, 180510. [Google Scholar] [CrossRef] [PubMed] - Chen, D.X.; Liu, R.F.; Zhang, P.; Wang, Y.L.; Li, H.R.; Gao, H.; Li, F.L. Realization of quantum permutation algorithm in high dimensional Hilbert space. Chin. Phys. B
**2017**, 26, 060305. [Google Scholar] [CrossRef] - Lavery, M.P.J.; Robertson, D.J.; Berkhout, G.C.G.; Love, G.D.; Padgett, M.J.; Courtial, J. Refractive elements for the measurement of the orbital angular momentum of a single photon. Opt. Express
**2012**, 20, 2110–2115. [Google Scholar] [CrossRef] [PubMed] - Lavery, M.P.J.; Robertson, D.J.; Sponselli, A.; Courtial, J.; Steinhoff, N.K.; Tyler, G.A.; Willner, A.; Padgett, M.J. Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states. New J. Phys.
**2013**, 15, 013024. [Google Scholar] [CrossRef] [Green Version] - Mirhosseini, M.; Malik, M.; Shi, Z.; Boyd, R.W. Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun.
**2013**, 4, 1–6. [Google Scholar] [CrossRef] [PubMed] - Malik, M.; Mirhosseini, M.; Lavery, M.P.J.; Leach, J.; Padgett, M.J.; Boyd, R.W. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nat. Commun.
**2014**, 5, 3115. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Shi, Z.; Mirhosseini, M.; Margiewicz, J.; Malik, M.; Rivera, F.; Zhu, Z.; Boyd, R.W. Scan-free direct measurement of an extremely high-dimensional photonic state. Optica
**2015**, 2, 388–392. [Google Scholar] [CrossRef] - Zhou, H.L.; Fu, D.Z.; Dong, J.J.; Zhang, P.; Chen, D.X.; Cai, X.L.; Li, F.L.; Zhang, X.L. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect. Light Sci. Appl.
**2017**, 6, e16251. [Google Scholar] [CrossRef] - Kulkarni, G.; Sahu, R.; Magaña-Loaiza, O.S.; Boyd, R.W.; Jha, A.K. Single-shot measurement of the orbital-angular-momentum spectrum of light. Nat. Commun.
**2017**, 8, 1054. [Google Scholar] [CrossRef] - Gisin, N.; Fasel, S.; Kraus, B.; Zbinden, H.; Ribordy, G. Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A
**2006**, 73, 022320. [Google Scholar] [CrossRef] [Green Version] - Jain, N.; Anisimova, E.; Khan, I.; Makarov, V.; Marquardt, C.; Leuchs, G. Trojan-horse attacks threaten the security of practical quantum cryptography. New J. Phys.
**2014**, 16, 123030. [Google Scholar] [CrossRef] [Green Version] - Jain, N.; Stiller, B.; Khan, I.; Makarov, V.; Marquardt, C.; Leuchs, G. Risk Analysis of Trojan-Horse Attacks on Practical Quantum Key Distribution Systems. IEEE J. Sel. Top. Quantum Electron.
**2015**, 21, 168–177. [Google Scholar] [CrossRef] [Green Version] - Qi, B. Trustworthiness of detectors in quantum key distribution with untrusted detectors. Phys. Rev. A
**2015**, 91, 020303. [Google Scholar] [CrossRef] - Da Silva, T.F.; do Amaral, G.C.; Xavier, G.B.; Temporão, G.P.; von der Weid, J.P. Safeguarding Quantum Key Distribution Through Detection Randomization. IEEE J. Sel. Top. Quantum Electron.
**2015**, 21, 159–167. [Google Scholar] [CrossRef] - Lim, C.C.W.; Walenta, N.; Legré, M.; Gisin, N.; Zbinden, H. Random Variation of Detector Efficiency: A Countermeasure Against Detector Blinding Attacks for Quantum Key Distribution. IEEE J. Sel. Top. Quantum Electron.
**2015**, 21, 192–196. [Google Scholar] [CrossRef] - Coffman, V.; Kundu, J.; Wootters, W.K. Distributed entanglement. Phys. Rev. A
**2000**, 61, 052306. [Google Scholar] [CrossRef] - Wang, F.; Erhard, M.; Babazadeh, A.; Malik, M.; Krenn, M.; Zeilinger, A. Generation of the complete four-dimensional Bell basis. Optica
**2017**, 4, 1462–1467. [Google Scholar] [CrossRef] - Lee, H.J.; Choi, S.K.; Park, H.S. Experimental Demonstration of Four-Dimensional Photonic Spatial Entanglement between Multi-core Optical Fibres. Sci. Rep.
**2017**, 7, 4302. [Google Scholar] [CrossRef] - Lee, H.J.; Park, H.S. Generation and measurement of arbitrary four-dimensional spatial entanglement between photons in multicore fibers. Photon. Res.
**2019**, 7, 19–27. [Google Scholar] [CrossRef] - Goyal, S.K.; Boukama-Dzoussi, P.E.; Ghosh, S.; Roux, F.S.; Konrad, T. Qudit-Teleportation for photons with linear optics. Sci. Rep.
**2014**, 4, 4543. [Google Scholar] [CrossRef] - Jo, Y.; Son, W. Enhanced Bell state measurement for efficient measurement-device-independent quantum key distribution using 3-dimensional quantum states. Sci. Rep.
**2019**, in press. [Google Scholar] - Ding, Y.; Bacco, D.; Dalgaard, K.; Cai, X.; Zhou, X.; Rottwitt, K.; Oxenløwe, L.K. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. Npj Quantum Inf.
**2017**, 3, 25. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**A schematic setup of 3-dimensional quantum key distribution (QKD) with hybrid encoding. Alice uses orbital angular momentum (OAM) modes of a single photon, and Bob controls the phase of each path to encode their information in the single photon. The encoded photon enters into a 3-port interferometer. After single photon interference, a OAM value and existing path of the single photon is measured. SLM: spatial light modulator; BS1: 50:50 beam splitter; BS2: beam splitter of which transmissivity is $1/3$; BS3: beam splitter of which transmissivity is $2/3$; OAM CT: cyclic transformation of OAM modes.

**Figure 2.**Schematic setups of Bob’s two encoding systems. (

**a**) Bob chooses one path to encode his information by using optical switch; (

**b**) Bob encodes his information by control phase shifters, B1 and B2. Details are described in the maintext. BS1: 50:50 beam splitter; BS2: beam splitter of which transmissivity is $1/3$; PS: phase shifter

**Figure 3.**A schematic diagram of experimental setup of three-fold cyclic transformation of OAM modes. There are OAM beam splitters (OAM BSs) which consist of a Mach-Zehnder interferometer with Dove prisms. $\alpha /2$ means relative angle between the two Dove prisms. The first OAM BS ($\alpha =\pi $) and the final OAM BS ($\alpha =-\pi $) change a direction of propagation of a photon whose OAM value is odd and even, respectively. The second OAM BS ($\alpha =\pi /2$) separates a photon whose OAM value is 0 and 2. With OAM holograms, the three-fold cyclic transformation of OAM modes $\{-1,0,1\}$ is accomplished.

**Figure 4.**The secret key rate of the original detector-device-independent QKD (DDI-QKD) (black dotted line), 3d- (red dashed line), 4d- (blue dot-dashed line), and 5d-QKD with hybrid encoding (orange solid line). (

**a**) Plot of the secret key rate r (bits/sifted pulse) vs. state error rate Q; (

**b**) Plot of the secret key rate r (bits/sifted pulse) vs. transmission loss $\eta $ (dB). Dark count rate of single photon detectors is assumed as ${10}^{-5}$ per pulse.

**Figure 5.**The secret key rate of 3d-measurement-device-independent QKD (MDI-QKD) (red dashed line) and 3d-QKD with hybrid encoding (black solid line). Plot of the secret key rate R (bits/total pulse) vs. transmission loss $\eta $ (dB). The secret key rate per total signal is obtained from (the secret key rate per sifted key) × (the signal sifting rate). Details are described in maintext. Dark count rate of single photon detectors is assumed as ${10}^{-5}$ per pulse.

**Figure 6.**The secret key rate of 3d-QKD hybrid encoding (black solid line) and a prepare-and-measure 3d-QKD (red dashed line). Dark count rate of single photon detectors is assumed as ${10}^{-5}$ per pulse.

**Table 1.**An example of Bob’s operation on his encoded information when $d=3$ and the result of the measurement is $|{\Phi}_{3i+j}\rangle $. According to their bases choice and the measurement result, it is necessary to retrieve his information for sharing the same information.

Bases | Bob’s Operation ($|{\mathbf{\Phi}}_{3\mathit{i}+\mathit{j}}\rangle $) |
---|---|

bases 1 (${l}_{x}$, ${p}_{y}$) | $y\to y-i$ (mod 3) |

$1\leftrightarrow 2$ for $j=0$ | |

bases 2 (${\overline{l}}_{x}$, ${\overline{p}}_{y}$) | $0\leftrightarrow 2$ for $j=1$ |

$0\leftrightarrow 1$ for $j=2$ |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jo, Y.; Park, H.S.; Lee, S.-W.; Son, W.
Efficient High-Dimensional Quantum Key Distribution with Hybrid Encoding. *Entropy* **2019**, *21*, 80.
https://doi.org/10.3390/e21010080

**AMA Style**

Jo Y, Park HS, Lee S-W, Son W.
Efficient High-Dimensional Quantum Key Distribution with Hybrid Encoding. *Entropy*. 2019; 21(1):80.
https://doi.org/10.3390/e21010080

**Chicago/Turabian Style**

Jo, Yonggi, Hee Su Park, Seung-Woo Lee, and Wonmin Son.
2019. "Efficient High-Dimensional Quantum Key Distribution with Hybrid Encoding" *Entropy* 21, no. 1: 80.
https://doi.org/10.3390/e21010080