# The Symplectic Camel and Poincaré Superrecurrence: Open Problems

## Abstract

**:**

## 1. Introduction

## 2. Subsystems of Hamiltonian Systems

#### 2.1. Description of the Problem

#### 2.2. Non-Squeezing and Packing

#### 2.3. One Step Further: Subsystems

#### 2.4. A Simple Case of Superrecurrence

## 3. Discussion

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Poincaré, H. Sur le problème des trois corps et les équations de la dynamique, Mémoire couronné du prix de S.M. le roi Oscar II de Suède. Acta Math.
**1890**, 13, A3–A270. (In French) [Google Scholar] - De Gosson, M. Principles of Newtonian and Quantum Mechanics, the Need for Planck’s Constant, 2nd ed.; With a Foreword by Hiley, B.; World Scientific: Singapore, 2016. [Google Scholar]
- De Gosson, M. Symplectic Geometry and Quantum Mechanics; Birkhäuser: Basel, Switzerland, 2006. [Google Scholar]
- De Gosson, M. The Symplectic Camel and the Uncertainty Principle: The Tip of an Iceberg? Found. Phys.
**2009**, 39, 194–214. [Google Scholar] [CrossRef] [Green Version] - De Gosson, M.; Luef, F. Symplectic Capacities and the Geometry of Uncertainty: The Irruption of Symplectic Topology in Classical and Quantum Mechanics. Phys. Rep.
**2009**, 484, 131–179. [Google Scholar] [CrossRef] - De Gosson, M.A.; Hiley, B.J. Imprints of the quantum world in classical mechanics. Found Phys.
**2011**, 41, 1415–1436. [Google Scholar] [CrossRef] - Kalogeropoulos, N. Time irreversibility from symplectic non-squeezing. Phys. A Stat. Mech. Appl.
**2018**, 495, 202–210. [Google Scholar] [CrossRef] [Green Version] - Maruskin, J.M.; Scheeres, D.J.; Bloch, A.M. Dynamics of Symplectic Subvolumes. SIAM J. Appl. Dyn. Syst.
**2009**, 8, 180–201. [Google Scholar] [CrossRef] [Green Version] - Scheeres, D.J.; de Gosson, M.A.; Maruskin, J.M. Applications of Symplectic Topology to orbit Uncertainty and Spacecraft Navigation. J. Astronaut. Sci.
**2012**, 59, 63–83. [Google Scholar] [CrossRef] - De Gosson, M. On the Use of Minimum Volume Ellipsoids and Symplectic Capacities for Studying Classical Uncertainties for Joint Position—Momentum Measurements. J. Stat. Mech.
**2010**, 2010, P11005. [Google Scholar] [CrossRef] - Altmann, E.G.; Kantz, H. Recurrence time analysis, long-term correlations, and extreme events. Phys. Rev. E.
**2005**, 71, 056106. [Google Scholar] [CrossRef] [PubMed] - Sharov, S.R. Basis of Local Approach in Classical Statistical Mechanics. Entropy
**2005**, 7, 122–133. [Google Scholar] [CrossRef] [Green Version] - Penrose, R. The Emperor’s New Mind; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Katok, A. Ergodic perturbations of degenerate integrable Hamiltonian systems. Math. USSR Izv.
**1973**, 7, 535–571. [Google Scholar] [CrossRef] - Gromov, M. Pseudoholomorphic curves in symplectic manifolds. Invent. Math.
**1985**, 82, 307–347. [Google Scholar] [CrossRef] - Reich, E.S. How camels could explain quantum uncertainty. New Sci.
**2009**, 12, 2697. [Google Scholar] - Arnol’d, V.I. Mathematical Methods of Classical Mechanics, 2nd ed.; Graduate Texts in Mathematics; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Abbondandolo, A.; Matveyev, S. Middle-dimensional squeezing and non-squeezing behaviour of symplectomorphisms. arXiv
**2011**, arXiv:1105.2931v1. [Google Scholar] - Schlenk, F. Symplectic Embedding Problems, Old and New. Bull. Am. Math. Soc.
**2018**, 55, 139–182. [Google Scholar] [CrossRef] - Polterovich, L. Quantum Footprints of Symplectic Rigidity. EMS Newsl.
**2016**, 12, 16–21. [Google Scholar] [CrossRef] - Charles, L.; Polterovich, L. Quantum Speed Limit Versus Classical Displacement Energy. In Annales Henri Poincaré; Springer: Berlin/Heidelberg, Germany, 2018; Volume 19, pp. 1215–1257. [Google Scholar]
- De Gosson, M. Born–Jordan Quantization and the Equivalence of the Schrödinger and Heisenberg Pictures. Found. Phys.
**2014**, 44, 1096–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version] - De Gosson, M. Introduction to Born–Jordan Quantization: Theory and Applications; Series Fundamental Theories of Physics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- De Gosson, M. Paths of Canonical Transformations and their Quantization. Rev. Math. Phys.
**2015**, 27, 1530003. [Google Scholar] [CrossRef]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gosson, M.A.d.
The Symplectic Camel and Poincaré Superrecurrence: Open Problems. *Entropy* **2018**, *20*, 499.
https://doi.org/10.3390/e20070499

**AMA Style**

Gosson MAd.
The Symplectic Camel and Poincaré Superrecurrence: Open Problems. *Entropy*. 2018; 20(7):499.
https://doi.org/10.3390/e20070499

**Chicago/Turabian Style**

Gosson, Maurice A. de.
2018. "The Symplectic Camel and Poincaré Superrecurrence: Open Problems" *Entropy* 20, no. 7: 499.
https://doi.org/10.3390/e20070499