# Vacuum Landscaping: Cause of Nonlocal Influences without Signaling

^{*}

## Abstract

**:**

## 1. Introduction: Quantum Mechanics without Wavefunctions

## 2. The Two-Momenta Approach to Emergent Quantum Mechanics

## 3. Derivation of the De Broglie–Bohm Guiding Equation for N Particles

## 4. Vacuum Landscaping: Cause of Nonlocal Influences without Signaling

## 5. Conclusions and Outlook

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## References

- Deckert, D.A.; Dürr, D.; Pickl, P. Quantum Dynamics with Bohmian Trajectories. J. Phys. Chem. A
**2007**, 111, 10325–10330. [Google Scholar] [CrossRef] [PubMed] - Poirier, B. Bohmian mechanics without pilot waves. Chem. Phys.
**2010**, 370, 4–14. [Google Scholar] [CrossRef] - Poirier, B. Trajectory-based Theory of Relativistic Quantum Particles. arXiv, 2012; arXiv:1208.6260. [Google Scholar]
- Schiff, J.; Poirier, B. Communication: Quantum mechanics without wavefunctions. J. Chem. Phys.
**2012**, 136, 031102. [Google Scholar] [CrossRef] [PubMed] - Hall, M.J.W.; Deckert, D.A.; Wiseman, H.M. Quantum Phenomena Modeled by Interactions between Many Classical Worlds. Phys. Rev. X
**2014**, 4, 041013. [Google Scholar] [CrossRef] - Couder, Y.; Protière, S.; Fort, E.; Boudaoud, A. Dynamical phenomena: Walking and orbiting droplets. Nature
**2005**, 437, 208. [Google Scholar] [CrossRef] [PubMed] - Couder, Y.; Fort, E. Single-particle Diffraction and Interference at a macroscopic scale. Phys. Rev. Lett.
**2006**, 97, 154101. [Google Scholar] [CrossRef] [PubMed] - Couder, Y.; Fort, E. Probabilities and trajectories in a classical wave-particle duality. J. Phys. Conf. Ser.
**2012**, 361, 012001. [Google Scholar] [CrossRef][Green Version] - Bush, J.W.M. Quantum mechanics writ large. Proc. Natl. Acad. Sci. USA
**2010**, 107, 17455–17456. [Google Scholar] [CrossRef][Green Version] - Bush, J.W.M. The new wave of pilot-wave theory. Phys. Today
**2015**, 68, 47–53. [Google Scholar] [CrossRef][Green Version] - Bush, J.W.M. Pilot-Wave Hydrodynamics. Annu. Rev. Fluid Mech.
**2015**, 47, 269–292. [Google Scholar] [CrossRef][Green Version] - De Broglie, L.V.P.R. Non-Linear Wave Mechanics: A Causal Interpretation; Elsevier: Amsterdam, The Netherland, 1960. [Google Scholar]
- Grössing, G. The Vacuum Fluctuation Theorem: Exact Schrödinger Equation via Nonequilibrium Thermodynamics. Phys. Lett. A
**2008**, 372, 4556–4563. [Google Scholar] [CrossRef] - Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H. Emergence and collapse of quantum mechanical superposition: Orthogonality of reversible dynamics and irreversible diffusion. Physica A
**2010**, 389, 4473–4484. [Google Scholar] [CrossRef][Green Version] - Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H. Elements of sub-quantum thermodynamics: Quantum motion as ballistic diffusion. J. Phys. Conf. Ser.
**2011**, 306, 012046. [Google Scholar] [CrossRef] - Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H. An explanation of interference effects in the double slit experiment: Classical trajectories plus ballistic diffusion caused by zero-point fluctuations. Ann. Phys.
**2012**, 327, 421–437. [Google Scholar] [CrossRef][Green Version] - Grössing, G.; Mesa Pascasio, J.; Schwabl, H. A Classical Explanation of Quantization. Found. Phys.
**2011**, 41, 1437–1453. [Google Scholar] [CrossRef][Green Version] - Boltzmann, L. Über die mechanische Bedeutung des zweiten Hauptsatzes der Wärmetheorie. Wien. Ber.
**1866**, 53, 195–200. [Google Scholar] - Fussy, S.; Mesa Pascasio, J.; Schwabl, H.; Grössing, G. Born’s Rule as Signature of a Superclassical Current Algebra. Ann. Phys.
**2014**, 343, 200–214. [Google Scholar] [CrossRef] - Nelson, E. Derivation of the Schrödinger Equation from Newtonian Mechanics. Phys. Rev.
**1966**, 150, 1079–1085. [Google Scholar] [CrossRef] - Grössing, G. On the thermodynamic origin of the quantum potential. Physica A
**2009**, 388, 811–823. [Google Scholar] [CrossRef][Green Version] - Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H. Implications of a deeper level explanation of the deBroglie–Bohm version of quantum mechanics. Quantum Stud. Math. Found.
**2015**, 2, 133–140. [Google Scholar] [CrossRef][Green Version] - Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H. ’Systemic nonlocality’ from changing constraints on sub-quantum kinematics. J. Phys. Conf. Ser.
**2013**, 442, 012012. [Google Scholar] [CrossRef] - Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H. Relational causality and classical probability: Grounding quantum phenomenology in a superclassical theory. J. Phys. Conf. Ser.
**2014**, 504, 012006. [Google Scholar] [CrossRef][Green Version] - Holland, P.R. The Quantum Theory of Motion; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Bohm, D.; Hiley, B.J. The Undivided Universe: An Ontological Interpretation of Quantum Theory; Routledge: London, UK, 1993. [Google Scholar]
- Sanz, Á.S.; Borondo, F. Contextuality, decoherence and quantum trajectories. Chem. Phys. Lett.
**2009**, 478, 301–306. [Google Scholar] [CrossRef][Green Version] - Bohm, D. Wholeness and the Implicate Order; Routledge: London, UK, 1980. [Google Scholar]
- Walleczek, J.; Grössing, G. The Non-Signalling theorem in generalizations of Bell’s theorem. J. Phys. Conf. Ser.
**2014**, 504, 012001. [Google Scholar] [CrossRef] - Walleczek, J.; Grössing, G. Nonlocal Quantum Information Transfer Without Superluminal Signalling and Communication. Found. Phys.
**2016**, 46, 1208–1228. [Google Scholar] [CrossRef][Green Version] - Grössing, G. Emergence of quantum mechanics from a sub-quantum statistical mechanics. Int. J. Mod. Phys. B
**2014**, 145–179. [Google Scholar] [CrossRef] - Tollaksen, J.; Aharonov, Y.; Casher, A.; Kaufherr, T.; Nussinov, S. Quantum interference experiments, modular variables and weak measurements. New J. Phys.
**2010**, 12, 013023. [Google Scholar] [CrossRef][Green Version] - Bancal, J.D.; Pironio, S.; Acin, A.; Liang, Y.C.; Scarani, V.; Gisin, N. Quantum nonlocality based on finite-speed causal influences leads to superluminal signaling. Nat. Phys.
**2012**, 8, 867–870. [Google Scholar] [CrossRef] - Batelaan, H.; Jones, E.; Huang, W.C.W.; Bach, R. Momentum exchange in the electron double-slit experiment. J. Phys. Conf. Ser.
**2016**, 701, 012007. [Google Scholar] [CrossRef][Green Version] - De la Peña, L.; Cetto, A.M.; Valdés-Hernándes, A. The Emerging Quantum: The Physics behind Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Elze, H.T. On configuration space, Born’s rule and ontological states. arXiv, 2018; arXiv:1802.07189. [Google Scholar]
- Hiley, B.J. Structure Process, Weak Values and Local Momentum. J. Phys. Conf. Ser.
**2016**, 701, 012010. [Google Scholar] [CrossRef][Green Version] - Maudlin, T. Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics, 3rd ed.; Wiley-Blackwell: West Sussex, UK, 2011. [Google Scholar]
- Norsen, T. Bohmian Conditional Wave Functions (and the status of the quantum state). J. Phys. Conf. Ser.
**2016**, 701, 012003. [Google Scholar] [CrossRef][Green Version] - Ord, G. Quantum mechanics in a two-dimensional spacetime: What is a wavefunction? Ann. Phys.
**2009**, 324, 1211–1218. [Google Scholar] [CrossRef] - Vervoort, L. No-Go Theorems Face Background-Based Theories for Quantum Mechanics. Found. Phys.
**2016**, 46, 458–472. [Google Scholar] [CrossRef]

**Figure 1.**Scheme of interference at a double-slit. Considering an incoming beam of electrons with wave number $\mathbf{k}$ impinging on a wall with two slits, two beams with wave numbers ${\mathbf{k}}_{A}$ and ${\mathbf{k}}_{B}$, respectively, are created, which one may denote as “pre-determined” velocities ${\mathbf{v}}_{\alpha}=\frac{1}{m}\hslash {\mathbf{k}}_{\alpha},\phantom{\rule{0.222222em}{0ex}}\alpha =\mathrm{A}\phantom{\rule{0.222222em}{0ex}}\mathrm{or}\phantom{\rule{0.222222em}{0ex}}\mathrm{B}.$ Taking into account the influences of the osmotic momentum field $m\mathbf{u}$, one has to combine all the velocities/momenta at a given point in space and time in order to compute the resulting, or emergent, velocity/momentum field ${\mathbf{v}}_{i}=\frac{1}{m}\hslash {\kappa}_{i},\phantom{\rule{0.222222em}{0ex}}i=1\phantom{\rule{0.222222em}{0ex}}\mathrm{or}\phantom{\rule{0.222222em}{0ex}}2$. This, then, provides the correct intensity distributions and average trajectories (lower plane).

**Figure 2.**Classical computer simulation of the interference pattern: intensity distribution with increasing intensity from white through yellow and orange, with trajectories (red) for two Gaussian slits, and with large dispersion (evolution from bottom to top; ${v}_{x,1}={v}_{x,2}=0$). From [16].

**Figure 3.**Classical computer simulation of the interference pattern: intensity distribution with increasing intensity from white through yellow and orange, with trajectories (red) for two Gaussian slits, and with small dispersion (evolution from bottom to top; ${v}_{x,1}=-{v}_{x,2}$). From [16].

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H. Vacuum Landscaping: Cause of Nonlocal Influences without Signaling. *Entropy* **2018**, *20*, 458.
https://doi.org/10.3390/e20060458

**AMA Style**

Grössing G, Fussy S, Mesa Pascasio J, Schwabl H. Vacuum Landscaping: Cause of Nonlocal Influences without Signaling. *Entropy*. 2018; 20(6):458.
https://doi.org/10.3390/e20060458

**Chicago/Turabian Style**

Grössing, Gerhard, Siegfried Fussy, Johannes Mesa Pascasio, and Herbert Schwabl. 2018. "Vacuum Landscaping: Cause of Nonlocal Influences without Signaling" *Entropy* 20, no. 6: 458.
https://doi.org/10.3390/e20060458