# A New Class of Retrocausal Models

## Abstract

**:**

## 1. Introduction

## 2. Conceptual Framework

## 3. Constrained Classical Fields

#### 3.1. Classical Photons

#### 3.2. Simple Model Example

- The a priori probability distribution on each unknown field intensity is given by Equation (1)—to be updated for any given experiment.
- The unknown field values are further constrained to be equal as pairs, $\{{I}_{1},{I}_{2}\}=\{{I}_{A},{I}_{B}\}$.
- ${I}_{1}$ is non-negligible because it accompanies a known “photon”.
- The probability of each diagram is given by ${P}_{0}\left({I}_{1}\right){P}_{0}\left({I}_{2}\right)$, or equivalently, ${P}_{0}\left({I}_{A}\right){P}_{0}\left({I}_{B}\right)$.

#### 3.3. Discussion

## 4. Averaged Fields and Weak Values

#### 4.1. Beamsplitter Analysis

#### 4.2. Interferometer Analysis

#### 4.3. Weak Values

## 5. An Improved Model

- The unknown field values are constrained to all be equal: ${I}_{1}={I}_{2}={I}_{A}={I}_{B}$.
- The $apriori$ probability distribution on each unknown field intensity is given by Equation (22)—but must be updated for any given experiment.
- The relative phase between the incoming fields is a priori completely unknown—but must be updated for any given experiment.

## 6. Summary and Future Directions

- Distributed classical fields can be consistent with particle-like detection events.
- There exist simple constraints and a priori field intensity distributions that yield the correct probabilities for basic experimental geometries.
- Most unobserved field modes are expected to have zero intensity (unlike in SED).
- The usual retrocausal account for maximally entangled photons still seems to be available.
- The average intermediate field values, minus the unobserved background, is precisely equal to the “weak value” predicted by quantum theory (in the cases considered so far).
- Negative weak values can have a classical interpretation, provided the unobserved background is sufficiently large.

## Acknowledgments

## Conflicts of Interest

## References

- Sutherland, R.I. Bell’s theorem and backwards-in-time causality. Int. J. Theor. Phys.
**1983**, 22, 377–384. [Google Scholar] [CrossRef] - Price, H. Time’s Arrow & Archimedes’ Point: New Directions for the Physics of Time; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Wharton, K. Quantum states as ordinary information. Information
**2014**, 5, 190–208. [Google Scholar] [CrossRef] - Price, H.; Wharton, K. Disentangling the quantum world. Entropy
**2015**, 17, 7752–7767. [Google Scholar] [CrossRef] - Leifer, M.S.; Pusey, M.F. Is a time symmetric interpretation of quantum theory possible without retrocausality? Proc. R. Soc. A
**2017**, 473, 20160607. [Google Scholar] [CrossRef] [PubMed] - Adlam, E. Spooky Action at a Temporal Distance. Entropy
**2018**, 20, 41. [Google Scholar] [CrossRef] - Argaman, N. Bell’s theorem and the causal arrow of time. Am. J. Phys.
**2010**, 78, 1007–1013. [Google Scholar] [CrossRef] - Almada, D.; Ch’ng, K.; Kintner, S.; Morrison, B.; Wharton, K. Are Retrocausal Accounts of Entanglement Unnaturally Fine-Tuned? Int. J. Quantum Found.
**2016**, 2, 1–14. [Google Scholar] - Weinstein, S. Learning the Einstein-Podolsky-Rosen correlations on a Restricted Boltzmann Machine. arXiv, 2017; arXiv:1707.03114. [Google Scholar]
- Sen, I. A local ψ-epistemic retrocasual hidden-variable model of Bell correlations with wavefunctions in physical space. arXiv, 2018; arXiv:1803.06458. [Google Scholar]
- Sutherland, R.I. Lagrangian Description for Particle Interpretations of Quantum Mechanics: Entangled Many-Particle Case. Found. Phys.
**2017**, 47, 174–207. [Google Scholar] [CrossRef] - Bohm, D.; Hiley, B.J.; Kaloyerou, P.N. An ontological basis for the quantum theory. Phys. Rep.
**1987**, 144, 321–375. [Google Scholar] [CrossRef] - Kaloyerou, P. The GRA beam-splitter experiments and particle-wave duality of light. J. Phys. A
**2006**, 39, 11541. [Google Scholar] [CrossRef] - Aharonov, Y.; Albert, D.Z.; Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett.
**1988**, 60, 1351. [Google Scholar] [CrossRef] [PubMed] - Dressel, J.; Malik, M.; Miatto, F.M.; Jordan, A.N.; Boyd, R.W. Colloquium: Understanding quantum weak values: Basics and applications. Rev. Mod. Phys.
**2014**, 86, 307. [Google Scholar] [CrossRef] - Boyer, T.H. A brief survey of stochastic electrodynamics. In Foundations of Radiation Theory and Quantum Electrodynamics; Springer: Berlin/Heidelberg, Germany, 1980; pp. 49–63. [Google Scholar]
- De La Pena, L.; Cetto, A.M. The qUantum Dice: An Introduction to Stochastic Electrodynamics; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Woodward, J. Making Things Happen: A Theory of Causal Explanation; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Price, H. Agency and probabilistic causality. Br. J. Philos. Sci.
**1991**, 42, 157–176. [Google Scholar] [CrossRef] - Pearl, J. Causality; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Menzies, P.; Price, H. Causation as a secondary quality. Br. J. Philos. Sci.
**1993**, 44, 187–203. [Google Scholar] [CrossRef] - Price, H. Toy models for retrocausality. Stud. Hist. Philos. Sci. Part B
**2008**, 39, 752–761. [Google Scholar] [CrossRef] - Leifer, M.S. Is the Quantum State Real? An Extended Review of ψ-ontology Theorems. Quanta
**2014**, 3, 67–155. [Google Scholar] [CrossRef] - Dressel, J.; Bliokh, K.Y.; Nori, F. Classical field approach to quantum weak measurements. Phys. Rev. Lett.
**2014**, 112, 110407. [Google Scholar] [CrossRef] [PubMed] - Dressel, J. Weak values as interference phenomena. Phys. Rev. A
**2015**, 91, 032116. [Google Scholar] [CrossRef] - Ritchie, N.; Story, J.G.; Hulet, R.G. Realization of a measurement of a “weak value”. Phys. Rev. Lett.
**1991**, 66, 1107. [Google Scholar] [CrossRef] [PubMed] - Bliokh, K.Y.; Bekshaev, A.Y.; Kofman, A.G.; Nori, F. Photon trajectories, anomalous velocities and weak measurements: A classical interpretation. New J. Phys.
**2013**, 15, 073022. [Google Scholar] [CrossRef] - Howell, J.C.; Starling, D.J.; Dixon, P.B.; Vudyasetu, P.K.; Jordan, A.N. Interferometric weak value deflections: Quantum and classical treatments. Phys. Rev. A
**2010**, 81, 033813. [Google Scholar] [CrossRef] - Aharonov, Y.; Vaidman, L. The two-state vector formalism: An updated review. In Time in Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 399–447. [Google Scholar]
- Sinclair, J.; Spierings, D.; Brodutch, A.; Steinberg, A. Weak values and neoclassical realism. 2018; in press. [Google Scholar]
- De Beauregard, O.C. Une réponse à l’argument dirigé par Einstein, Podolsky et Rosen contre l’interprétation bohrienne des phénomènes quantiques. C. R. Acad. Sci.
**1953**, 236, 1632–1634. (In French) [Google Scholar] - Wharton, K. A novel interpretation of the Klein-Gordon equation. Found. Phys.
**2010**, 40, 313–332. [Google Scholar] [CrossRef] - Wharton, K.B.; Miller, D.J.; Price, H. Action duality: A constructive principle for quantum foundations. Symmetry
**2011**, 3, 524–540. [Google Scholar] [CrossRef] - Evans, P.W.; Price, H.; Wharton, K.B. New slant on the EPR-Bell experiment. Br. J. Philos. Sci.
**2012**, 64, 297–324. [Google Scholar] [CrossRef] - Harrison, A.K. Wavefunction collapse via a nonlocal relativistic variational principle. arXiv, 2012; arXiv:1204.3969. [Google Scholar]
- Schulman, L.S. Experimental test of the “Special State” theory of quantum measurement. Entropy
**2012**, 14, 665–686. [Google Scholar] [CrossRef][Green Version] - Heaney, M.B. A symmetrical interpretation of the Klein-Gordon equation. Found. Phys.
**2013**, 43, 733–746. [Google Scholar] [CrossRef] - Corry, R. Retrocausal models for EPR. Stud. Hist. Philos. Sci. Part B
**2015**, 49, 1–9. [Google Scholar] [CrossRef] - Lazarovici, D. A relativistic retrocausal model violating Bell’s inequality. Proc. R. Soc. A
**2015**, 471, 20140454. [Google Scholar] [CrossRef] - Silberstein, M.; Stuckey, W.M.; McDevitt, T. Beyond the Dynamical Universe: Unifying Block Universe Physics and Time as Experienced; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Wharton, K. Time-symmetric boundary conditions and quantum foundations. Symmetry
**2010**, 2, 272–283. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) A classical photon analog encounters a beamsplitter, and is divided among two detectors, in contradiction with observation. (

**b**) A classical photon analog, boosted by some unknown peak intensity ${I}_{1}$, encounters the same beamsplitter. Another beam with unknown peak intensity ${I}_{2}$ enters the dark port. This is potentially consistent with a classical photon detection in only detector A (“Y" for yes, “N" for no), so long as the output intensities ${I}_{A}$ and ${I}_{B}$ remain unobserved. (The wavefronts have been replaced by dashed lines for clarity.) (

**c**) The same inputs as in (

**b**), but with outputs consistent with classical photon detection in only detector B, where the output intensities ${I}_{A}$ and ${I}_{B}$ again remain unobserved.

**Figure 2.**A classical photon analog encounters two beamsplitters, and is divided among three detectors. The CPA is boosted by some unknown peak intensity ${I}_{1}$, and each beamsplitter’s dark port has an additional incident field with unknown intensity.

**Figure 3.**(

**a**) A classical photon analog, boosted by some unknown peak intensity ${I}_{1}$, enters an interferometer through a beamsplitter with transmission fraction T. An unknown field also enters from the dark port. Both paths to the final 50/50 beamsplitter are the same length; the intermediate field intensities on these paths are ${I}_{X}$ and ${I}_{Y}$. Here, detector A fires, leaving unmeasured output fields ${I}_{A}$ and ${I}_{B}$. (

**b**) The same situation as (

**a**), except here detector B fires.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wharton, K.
A New Class of Retrocausal Models. *Entropy* **2018**, *20*, 410.
https://doi.org/10.3390/e20060410

**AMA Style**

Wharton K.
A New Class of Retrocausal Models. *Entropy*. 2018; 20(6):410.
https://doi.org/10.3390/e20060410

**Chicago/Turabian Style**

Wharton, Ken.
2018. "A New Class of Retrocausal Models" *Entropy* 20, no. 6: 410.
https://doi.org/10.3390/e20060410