# Maxwell’s Demon and the Problem of Observers in General Relativity

## Abstract

**:**

## 1. Introduction

## 2. Comoving and Tilted Observers

## 3. Tilting the Lemaitre–Tolman–Bondi Congruence

## 4. Tilting the Szekeres Congruence

## 5. Tilted Shear-Free Axially Symmetric Fluids

## 6. The Maxwell’s Demon and the Observers in General Relativity

## 7. Discussion

## Acknowledgments

## Conflicts of Interest

## References

- Coley, A.A.; Tupper, B.O.J. Zero-curvature Friedmann–Robertson–Walker models as exact viscous magnetohydrodynamic. Astrophys. J.
**1983**, 271, 1–8. [Google Scholar] [CrossRef] - Coley, A.A.; Tupper, B.O.J. A new look at FRW cosmologies. Gen. Rel. Grav.
**1983**, 15, 977–983. [Google Scholar] [CrossRef] - Coley, A.A.; Tupper, B.O.J. Exact viscous fluid FRW cosmologies: The case of general k. Phy. Lett. A
**1984**, 100, 495–498. [Google Scholar] [CrossRef] - Coley, A.A. Observations and nonstandard FRW models. Astrophys. J.
**1987**, 318, 487–506. [Google Scholar] [CrossRef] - Herrera, L.; di Prisco, A.; Ibáñez, J. Tilted Lemaitre–Tolman–Bondi spacetimes: Hydrodynamic and thermodynamic properties. Phys. Rev. D
**2011**, 84, 943–954. [Google Scholar] [CrossRef] - Herrera, L.; di Prisco, A.; Ibáñez, J.; Carot, J. Vorticity and entropy production in tilted Szekeres spacetimes. Phys. Rev. D
**2012**, 86, 648–659. [Google Scholar] [CrossRef] - Sharif, M.; Tahir, H. Dynamics of tilted spherical star and stability of non-tilted congruence. Astrophys. Space Sci.
**2014**, 351, 619–624. [Google Scholar] [CrossRef] - Fernandez, J.; Pascual-Sanchez, J. Tilted Lemaitre model and the dark flow. Procc. Math. Stat.
**2014**, 60, 361. [Google Scholar] - Sharif, M.; Bhatti, M.Z.U.H. Structure scalars and super-Poynting vector of tilted Szekeres geometry. Int. J. Mod. Phys. D
**2015**, 24, 1550014. [Google Scholar] [CrossRef] - Yousaf, Z.; Bamba, K.; Bhatti, M.Z.U.H. Role of tilted congruence and f(R) gravity on regular compact objects. Phys. Rev. D
**2017**, 95, 024024. [Google Scholar] [CrossRef] - Bennet, C.H. The Thermodynamics of Computation–A Review. Int. J. Theor. Phys.
**1982**, 21, 905–940. [Google Scholar] [CrossRef] - Maxwell, J.C. Theory of Heat. Astron. Regist.
**1872**, 10, 107. [Google Scholar] - Lemaître, A.G. The Expanding Universe. Gen. Relativ. Grav.
**1997**, 29, 641–680. [Google Scholar] [CrossRef] - Tolman, R.C. Effect of Inhomogeneity on Cosmological Models. Proc. Natl. Acad. Sci. USA
**1934**, 20, 169–176. [Google Scholar] [CrossRef] [PubMed] - Bondi, H. Spherically symmetrical models in general relativity. Mon. Not. R. Astron. Soc.
**1947**, 107, 410–425. [Google Scholar] [CrossRef] - Stephani, H.; Kramer, D.; MacCallum, M.; Honselaers, C.; Hertl, E. Exact Solutions to Einstein’s Field Equations, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Szekeres, P. Quasispherical gravitational collapse. Phys. Rev. D
**1975**, 12, 2941. [Google Scholar] [CrossRef] - Szekeres, P. A class of inhomogeneous cosmological models. Commun. Math. Phys.
**1975**, 41, 55–64. [Google Scholar] [CrossRef] - Herrera, L.; di Prisco, A.; Ospino, J. Shear-free axially symmetric dissipative fluids. Phys. Rev. D
**2014**, 89, 127502. [Google Scholar] [CrossRef] - Herrera, L.; di Prisco, A.; Carot, J. Tilted shear-free axially symmetric fluids. Phys. Rev. D
**2018**, in press. [Google Scholar] - Herrera, L.; Barreto, W.; Carot, J.; di Prisco, A. Why does gravitational radiation produce vorticity? Class. Quantum. Grav.
**2007**, 24, 2645–2651. [Google Scholar] [CrossRef] - Herrera, L. The Gibbs paradox, the Landauer principle and the irreversibility associated with tilted observers. Entropy
**2017**, 19, 110. [Google Scholar] [CrossRef] - Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM Res. Dev.
**1961**, 5, 261–269. [Google Scholar] [CrossRef] - Born, M. Natural Philosophy of Cause and Chance; Clarendon Press: Oxford, UK, 1949. [Google Scholar]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Herrera, L.
Maxwell’s Demon and the Problem of Observers in General Relativity. *Entropy* **2018**, *20*, 391.
https://doi.org/10.3390/e20050391

**AMA Style**

Herrera L.
Maxwell’s Demon and the Problem of Observers in General Relativity. *Entropy*. 2018; 20(5):391.
https://doi.org/10.3390/e20050391

**Chicago/Turabian Style**

Herrera, Luis.
2018. "Maxwell’s Demon and the Problem of Observers in General Relativity" *Entropy* 20, no. 5: 391.
https://doi.org/10.3390/e20050391