# A New Local Fractional Entropy-Based Model for Kidney MRI Image Enhancement

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Proposed Model

#### Local Fractional Entropy

## 3. Experimental Results

## 4. Conclusions

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## References

- Torres, H.R.; Queirós, S.; Morais, P.; Oliveira, B.; Fonseca, J.C.; Vilaca, J.L. Kidney segmentation in ultrasound magnetic resonance and computed tomography images: A. systematic review. Comput. Methods Programs Biomed.
**2018**, 157, 49–67. [Google Scholar] [CrossRef] [PubMed] - Gonzalez, R.C.; Woods, R.E. Digital Image Processing; Prentice Hall: Upper Saddle River, NJ, USA, 2012. [Google Scholar]
- Raghunandan, K.; Shivakumara, P.; Jalab, H.A.; Ibrahim, R.W.; Kumar, G.H.; Pal, U.; Lu, T. Riesz fractional based model for enhancing license plate detection and recognition. IEEE Trans. Circuits Syst. Video Technol.
**2017**. [Google Scholar] [CrossRef] - Jalab, H.A.; Ibrahim, R.W.; Ahmed, A. Image denoising algorithm based on the convolution of fractional tsallis entropy with the riesz fractional derivative. Neural Comput. Appl.
**2017**, 28, 217–223. [Google Scholar] [CrossRef] - Kang, J.; Lee, J.Y.; Yoo, Y. A new feature-enhanced speckle reduction method based on multiscale analysis for ultrasound b-mode imaging. IEEE Trans. Biomed. Eng.
**2016**, 63, 1178–1191. [Google Scholar] [CrossRef] [PubMed] - Zhang, M.; Wu, T.; Beeman, S.C.; Cullen-McEwen, L.; Bertram, J.F.; Charlton, J.R.; Baldelomar, E.; Bennett, K.M. Efficient small blob detection based on local convexity, intensity and shape information. IEEE Trans. Med. Imaging
**2016**, 35, 1127–1137. [Google Scholar] [CrossRef] [PubMed] - Baselice, F.; Ferraioli, G.; Ambrosanio, M.; Pascazio, V.; Schirinzi, G. Enhanced wiener filter for ultrasound image restoration. Comput. Methods Programs Biomed.
**2018**, 153, 71–81. [Google Scholar] [CrossRef] [PubMed] - Koyuncu, H.; Ceylan, R. A Hybrid Tool on Denoising and Enhancement of Abdominal ct Images before Organ & Tumour Segmentation. In Proceedings of the 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO), Kiev, Ukraine, 18–20 April 2017; pp. 249–254. [Google Scholar]
- Gungor, M.A.; Karagoz, I. The homogeneity map method for speckle reduction in diagnostic ultrasound images. Measurement
**2015**, 68, 100–110. [Google Scholar] [CrossRef] - Roy, S.; Shivakumara, P.; Jalab, H.A.; Ibrahim, R.W.; Pal, U.; Lu, T. Fractional poisson enhancement model for text detection and recognition in video frames. Pattern Recognit.
**2016**, 52, 433–447. [Google Scholar] [CrossRef] - Jalab, H.A.; Ibrahim, R.W. Fractional alexander polynomials for image denoising. Signal Process.
**2015**, 107, 340–354. [Google Scholar] [CrossRef] - Jalab, H.A.; Ibrahim, R.W. Texture enhancement based on the savitzky-golay fractional differential operator. Math. Probl. Eng.
**2013**, 2013, 149289. [Google Scholar] [CrossRef] - Ibrahim, R.W.; Jalab, H.A. Existence of ulam stability for iterative fractional differential equations based on fractional entropy. Entropy
**2015**, 17, 3172–3181. [Google Scholar] [CrossRef] - Yang, X.-J. Local Fractional Functional Analysis & Its Applications; Citeseer: University Park, PA, USA, 2011. [Google Scholar]
- Yang, X.-J.; Srivastava, H.; He, J.-H.; Baleanu, D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A
**2013**, 377, 1696–1700. [Google Scholar] [CrossRef] - Yang, X.-J.; Baleanu, D.; Srivastava, H. Local fractional similarity solution for the diffusion equation defined on cantor sets. Appl. Math. Lett.
**2015**, 47, 54–60. [Google Scholar] [CrossRef] - Yang, X.-J.; Baleanu, D.; Srivastava, H.M. Local Fractional Integral Transforms and Their Applications; Academic Press: New York, NY, USA, 2015. [Google Scholar]
- Ubriaco, M.R. Entropies based on fractional calculus. Phys. Lett. A
**2009**, 373, 2516–2519. [Google Scholar] [CrossRef] - Machado, J.T. Fractional order generalized information. Entropy
**2014**, 16, 2350–2361. [Google Scholar] [CrossRef] - Yang, X.-J.; Machado, J.T.; Baleanu, D. Exact traveling-wave solution for local fractional boussinesq equation in fractal domain. Fractals
**2017**, 25, 1740006. [Google Scholar] [CrossRef] - Yang, X.-J.; Gao, F.; Srivastava, H.M. Exact travelling wave solutions for the local fractional two-dimensional burgers-type equations. Comput. Math. Appl.
**2017**, 73, 203–210. [Google Scholar] [CrossRef] - Yang, X.-J.; Baleanu, D.; Gao, F. New analytical solutions for klein-gordon and helmholtz equations in fractal dimensional space. Proc. Rom. Acad., Ser. A Math. Phys. Tech. Sci. Inf. Sci.
**2017**, 18, 231–238. [Google Scholar] - Yang, X.-J.; Gao, F.; Srivastava, H.M. A new computational approach for solving nonlinear local fractional PDEs. J. Comput. Appl. Math.
**2018**, 339, 285–296. [Google Scholar] [CrossRef] - Khalifa, F.; Shehata, M.; Soliman, A.; El-Ghar, M.A.; El-Diasty, T.; Dwyer, A.C.; El-Melegy, M.; Gimel’farb, G.; Keynton, R.; El-Baz, A. A generalized mri-based cad system for functional assessment of renal transplant. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, Australia, 18–21 April 2017; pp. 758–761. [Google Scholar]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process.
**2012**, 21, 4695–4708. [Google Scholar] [CrossRef] [PubMed] - Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett.
**2013**, 20, 209–212. [Google Scholar] [CrossRef]

**Figure 2.**Contrast increases after enhancement by the proposed method. (

**a**) Input Kidney image and its enhancement image by the proposed method; (

**b**) Histogram before enhancement (

**Left**); Histogram after enhancement (

**Right**).

**Figure 3.**The result of proposed enhancement model. (

**a**) Input poor quality kidney images and (

**b**) enhanced images.

**Figure 4.**Determining the value for α empirically. Average BRISQUE measure of predefined samples is calculated for different values of α.

**Figure 5.**Qualitative results of the proposed and existing methods. (

**a**) Input kidney images with different complexities, (

**b**) Adjust Intensity Values to Specified Range (AIV), (

**c**) Contrast-Limited Adaptive Histogram Equalization (CLAHE), (

**d**) Histogram Equalization (HISTEQ), (

**e**) Tsallis entropy, (

**f**) Riesz fractional and (

**g**) proposed method.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Al-Shamasneh, A.R.; Jalab, H.A.; Palaiahnakote, S.; Obaidellah, U.H.; Ibrahim, R.W.; El-Melegy, M.T.
A New Local Fractional Entropy-Based Model for Kidney MRI Image Enhancement. *Entropy* **2018**, *20*, 344.
https://doi.org/10.3390/e20050344

**AMA Style**

Al-Shamasneh AR, Jalab HA, Palaiahnakote S, Obaidellah UH, Ibrahim RW, El-Melegy MT.
A New Local Fractional Entropy-Based Model for Kidney MRI Image Enhancement. *Entropy*. 2018; 20(5):344.
https://doi.org/10.3390/e20050344

**Chicago/Turabian Style**

Al-Shamasneh, Ala’a R., Hamid A. Jalab, Shivakumara Palaiahnakote, Unaizah Hanum Obaidellah, Rabha W. Ibrahim, and Moumen T. El-Melegy.
2018. "A New Local Fractional Entropy-Based Model for Kidney MRI Image Enhancement" *Entropy* 20, no. 5: 344.
https://doi.org/10.3390/e20050344