# Lagrangian Function on the Finite State Space Statistical Bundle

## Abstract

**:**

## 1. Introduction

## 2. Statistical Bundle

## 3. The Tangent Space of the Statistical Bundle

**Example**

**1**(Boltzmann–Gibbs).

**Example**

**2**(Entropy flow).

## 4. Lagrangian Function

**Example**

**3**(Running Example 1).

**Example**

**4**(Running Example 2).

## 5. Action Integral

**Example**

**5**(Running Example 3).

## 6. Discussion

## Acknowledgments

## Conflicts of Interest

## References

- Arnold, V.I. Mathematical Methods of Classical Mechanics, 2nd ed.; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1989; Volume 60, p. xvi+516. [Google Scholar]
- Abraham, R.; Marsden, J.E. Foundations of Mechanics, 2nd ed.; Advanced Book Program, Reading, Mass; Benjamin/Cummings Publishing Co., Inc.: San Francisco, CA, USA, 1978; pp. xxii+m–xvi+806. [Google Scholar]
- Marsden, J.E.; Ratiu, T.S. Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, 2nd ed.; Texts in Applied Mathematics; Springer: New York, NY, USA, 1999; Volume 17, p. xviii+582. [Google Scholar]
- Amari, S.; Nagaoka, H. Methods of Information Geometry; American Mathematical Society: Providence, RI, USA, 2000; p. x+206. [Google Scholar]
- Leok, M.; Zhang, J. Connecting Information Geometry and Geometric Mechanics. Entropy
**2017**, 19, 518. [Google Scholar] [CrossRef] - Pistone, G. Nonparametric information geometry. In Geometric Science of Information, Proceedings of the First International Conference, GSI 2013, Paris, France, 28–30 August 2013; Nielsen, F., Barbaresco, F., Eds.; Lecture Notes in Computer Science; Springer: Heidelberg, Germany, 2013; Volume 8085, pp. 5–36. [Google Scholar]
- Lang, S. Differential and Riemannian Manifolds, 3rd ed.; Graduate Texts in Mathematics; Springer: Berlin, Germany, 1995; Volume 160, p. xiv+364. [Google Scholar]
- Pistone, G. Examples of the application of nonparametric information geometry to statistical physics. Entropy
**2013**, 15, 4042–4065. [Google Scholar] [CrossRef] - Lods, B.; Pistone, G. Information Geometry Formalism for the Spatially Homogeneous Boltzmann Equation. Entropy
**2015**, 17, 4323–4363. [Google Scholar] [CrossRef] - Pistone, G.; Rogantin, M. The exponential statistical manifold: mean parameters, orthogonality and space transformations. Bernoulli
**1999**, 5, 721–760. [Google Scholar] [CrossRef] - Efron, B.; Hastie, T. Computer Age Statistical Inference: Algorithms, Evidence, and Data Science; Cambridge University Press: New York, NY, USA, 2016; Volume 5, p. xix+475. [Google Scholar]
- Gibilisco, P.; Pistone, G. Connections on non-parametric statistical manifolds by Orlicz space geometry. IDAQP
**1998**, 1, 325–347. [Google Scholar] [CrossRef] - Landau, L.D.; Lifshits, E.M. Course of Theoretical Physics. Statistical Physics, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 1980; Volume 5. [Google Scholar]
- Shima, H. The Geometry of Hessian Structures; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2007; p. xiv+246. [Google Scholar]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pistone, G.
Lagrangian Function on the Finite State Space Statistical Bundle. *Entropy* **2018**, *20*, 139.
https://doi.org/10.3390/e20020139

**AMA Style**

Pistone G.
Lagrangian Function on the Finite State Space Statistical Bundle. *Entropy*. 2018; 20(2):139.
https://doi.org/10.3390/e20020139

**Chicago/Turabian Style**

Pistone, Giovanni.
2018. "Lagrangian Function on the Finite State Space Statistical Bundle" *Entropy* 20, no. 2: 139.
https://doi.org/10.3390/e20020139