#
The KCOD Model on (3,4,6,4) and (3^{4},6) Archimedean Lattices

## Abstract

**:**

## 1. Introduction

## 2. Model and Simulations

_{4}), defined as

## 3. Results and Discussion

_{4}on the disorder parameter p, obtained from simulations on $(3,4,6,4)$ and $({3}^{4},6)$ AL with L ranging from $L=8$ to $L=128$. The shape of $O\left(p\right)$, $OF$, and ${O}_{4}$ curves for a given value of L indicate the occurrence of a second-order phase transition in the system. The phase transition occurs at the value of the critical disorder parameter ${p}_{c}$. This critical disorder parameter ${p}_{c}$ is estimated as the point where the curves of the Binder cumulant ${O}_{4}$ for different system sizes N intercept each other [24]. The corresponding value of ${O}_{4}$ is represented by ${O}_{4}^{*}$. Then, we obtained ${p}_{c}=0.085\left(6\right)$ and ${O}_{4}^{*}=0.605\left(9\right)$; ${p}_{c}=0.146\left(5\right)$ and ${O}_{4}^{*}=0.606\left(4\right)$ for $(3,4,6,4)$, and $({3}^{4},6)$ AL, respectively.

## 4. Conclusions

## Acknowledgments

## Conflicts of Interest

## References

- Galam, S. Majority rule, hierarchical structures, and democratic totalitarianism: A statistical approach. J. Math. Psychol.
**1986**, 30, 426–434. [Google Scholar] [CrossRef] - Galam, S. Social paradoxes of majority rule voting and renormalization group. J. Stat. Phys.
**1990**, 61, 943–951. [Google Scholar] [CrossRef] - Fortunato, S.; Macy, M.; Redner, S. Editorial. J. Stat. Phys.
**2013**, 151, 1–8. [Google Scholar] [CrossRef] - Galam, S. The drastic outcomes from voting alliances in three-party democratic voting (1990 → 2013). J. Stat. Phys.
**2013**, 151, 46–68. [Google Scholar] - Galam, S. Sociophysics: A personal testimony. Physica A
**2004**, 336, 49–55. [Google Scholar] [CrossRef] - Stauffer, D. A Biased Review of Sociophysics. J. Stat. Phys.
**2013**, 151, 9–20. [Google Scholar] [CrossRef] - Galam, S. Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena; Springer: Berlin, Germany, 2012. [Google Scholar]
- Grinstein, G.; Jayaprakash, C.; He, Y. Statistical Mechanics of Probabilistic Cellular Automata. Phys. Rev. Lett.
**1985**, 55, 2527. [Google Scholar] [CrossRef] [PubMed] - De Oliveira, M.J. Isotropic majority-vote model on a square lattice. J. Stat. Phys.
**1992**, 66, 273–281. [Google Scholar] [CrossRef] - Santos, M.A.; Teixeira, S. Anisotropic voter model. J. Stat. Phys.
**1995**, 78, 963–970. [Google Scholar] [CrossRef] - Crochik, L.; Tomé, T. Entropy production in the majority vote model. Phys. Rev. E
**2005**, 72, 057103. [Google Scholar] [CrossRef] [PubMed] - Hasenbusch, M. Monte Carlo studies of the three-dimensional Ising model in equilibrium. Int. J. Mod. Phys. C
**2001**, 12, 911–1009. [Google Scholar] [CrossRef] - Binney, J.J.; Dowrick, N.J.; Fisher, A.J.; Newman, M.E.J. A Theory of Critical Phenomena. An Introduction to the Renormalization Group; Clarendon Press: Oxford, UK, 1992. [Google Scholar]
- Lima, F.W.S.; Malarz, K. Majority-vote model on (3, 4, 6, 4) and (3
^{4}, 6) Archimedean Lattices. Int. J. Mod. Phys. C**2006**, 17, 1273–1283. [Google Scholar] [CrossRef] - Lallouache, M.; Chakrabarti, A.S.; Chakraborti, A.; Chakrabarti, B.K. Opinion formation in kinetic exchange models: Spontaneous symmetry-breaking transition. Phys. Rev. E.
**2010**, 82, 056112. [Google Scholar] [CrossRef] [PubMed] - Biswas, S.; Chatterjee, A.; Sen, P. Disorder induced phase transition in kinetic models of opinion dynamics. Physica A
**2012**, 391, 3257–3265. [Google Scholar] [CrossRef] - Sen, P. Nonconservative kinetic exchange model of opinion dynamics with randomness and bounded confidence. Phys. Rev. E
**2012**, 86, 016115. [Google Scholar] [CrossRef] [PubMed] - Temperley, H.N.V. Two-dimensional Ising models. In Phase Transitions and Critical Phenomena; Domb, C., Green, M.S., Eds.; Academic Press: London, UK, 1972; Volume 1. [Google Scholar]
- Mukherjee, S.; Chatterjee, A. Disorder induced phase transition in an opinion dynamics model: Results in 2 and 3 dimensions. Phys. Rev. E
**2016**, 94, 062317. [Google Scholar] [CrossRef] [PubMed] - Anteneodo, C.; Crokidakis, N. Symmetry breaking by heating in a continuous opinion model. Phys. Rev. E
**2017**, 95, 042308. [Google Scholar] [CrossRef] [PubMed] - Vieira, A.R.; Anteneodo, C.; Crokidakis, N. Consequences of nonconformist behaviors in a continuous opinion model. J. Stat. Mech. Theory Exp.
**2016**, 2016, 023204. [Google Scholar] [CrossRef] - Yu, Y.; Xiao, G.; Li, G.; Tay, W.P.; Teoh, H.F. Opinion diversity and community formation in adaptive networks. arXiv, 2017; arXiv:1703.02223. [Google Scholar]
- Biswas, S.; Chandra, A.K.; Chatterjee, A.; Chakrabarti, B.K. Phase transitions and non-equilibrium relaxation in kinetic models of opinion formation. J. Phys. Conf. Ser.
**2011**, 297, 012004. [Google Scholar] - Binder, K.; Heermann, D.W. Monte Carlo Simulation in Statistical Phyics; Springer: Berlin, Germany, 1988. [Google Scholar]

**Figure 2.**(Color online). The opinion O, $OF$, and ${O}_{4}$, as a function of the parameter p, for lattice size $L=8$, 16, 32, 64, and 128, and $N=6{L}^{2}$ sites for $(3,4,6,4)$ (

**a**–

**c**) and $({3}^{4},6)$ Archimedean lattice (AL) (

**d**–

**f**).

**Figure 3.**(Color online). The $-ln(1-\frac{3}{2}{O}_{4})$ as a function of the parameter p, for $L=8$, 16, 32, 64, and 128 lattice sizes, and $N=6{L}^{2}$ for $(3,4,6,4)$ and $({3}^{4},6)$ AL.

**Figure 4.**Log–log plot of the dependence of the opinion ${O}^{*}=O\left({p}_{c}\right)$ on the linear system size L. Fitting data, we obtained the estimate for the critical ratio $\beta /\nu $.

**Figure 5.**Log–log plot of the $O{F}^{*}=O{F}_{{p}_{c}}$ at ${p}_{c}$ versus L for $(3,4,6,4)$, and $({3}^{4},6)$ AL. Fitting data, we obtained the estimate for the critical ratio $\gamma /\nu $.

**Figure 6.**$O{F}^{max}=O{F}_{{p}_{O{F}_{max}}}\left(N\right)$ at ${p}_{O{F}_{max}}\left(N\right)$ versus L for $(3,4,6,4)$ and $({3}^{4},6)$, AL. Fitting data, we obtained another estimate for the critical ratio $\gamma /\nu $ .

**Figure 7.**Plot of $ln|{p}_{c}\left(L\right)-{p}_{c}|$ versus the linear system size L for $(3,4,6,4)$ and $({3}^{4},6)$ AL. Fitting data, we obtained the estimate for the critical ratio $1/\nu $.

**Figure 8.**(Color online) Data collapse of the opinion O, OF, and O

_{4}shown in Figure 3 for $L=32$, 64, and 128 $(3,4,6,4)$ (

**a**–

**f**) and $({3}^{4},6)$ (

**d**–

**f**) AL. The exponent ratios used here were $\beta /\nu =0.126\left(1\right)$, $\gamma /\nu =1.50\left(7\right)$, and $1/\nu =0.90\left(5\right)$ for $(3,4,6,4)$, and $\beta /\nu =0.125\left(3\right)$, $\gamma /\nu =1.54\left(6\right)$, and $1/\nu =0.99\left(3\right)$ for $({3}^{4},6)$ AL.

MVM | $(3,4,6,4)$ | $({3}^{4},6)$ | $\left({4}^{4}\right)$ Ising |
---|---|---|---|

${T}_{c}$ | 0.651(3) | 0.667(2) | ≈2.269 |

${O}_{4}^{*}$ | 0.603(9) | 0.608(4) | 0.61 |

$\beta /\nu $ | 0.105(8) | 0.113(2) | 0.125 |

$\gamma /{\nu}^{T={T}_{c}}$ | 1.48(11) | 1.60(4) | 1.75 |

$\gamma /{\nu}^{T={T}^{*}}$ | 1.44(4) | 1.66(2) | 1.75 |

$1/\nu $ | 1.16(5) | 0.84(6) | 1 |

${D}_{\mathrm{eff}}$. | 1.78(7) | 1.83(6) | 2 |

**Table 2.**Critical parameter (${p}_{c}$), exponents, and effective dimension for continuous opinion dynamic (KCOD) model on $(3,4,6,4)$ and $({3}^{4},6)$. For completeness, we cite data for KCOD model on $\left({4}^{4}\right)$ as well [16].

KCOD | $(3,4,6,4)$ | $({3}^{4},6)$ | $\left({4}^{4}\right)$ |
---|---|---|---|

${p}_{c}$ | 0.085(6) | 0.146(5) | 0.2266(1) |

${O}_{4}^{*}$ | 0.605(9) | 0.606(4) | 0.559(1) |

$\beta /\nu $ | 0.126(1) | 0.125(3) | 0.125(1) |

$\gamma /{\nu}^{p={p}_{c}}$ | 1.50(7) | 1.54(6) | 1.75(1) |

$\gamma /{\nu}^{p={p}^{*}}$ | 1.50(5) | 1.55(5) | |

$1/\nu $ | 0.90(5) | 0.99(3) | 1.01(1) |

${D}_{\mathrm{eff}}$ | 1.75(6) | 1.80(7) |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

De Sousa Lima, F.W.
The KCOD Model on (3,4,6,4) and (3^{4},6) Archimedean Lattices. *Entropy* **2017**, *19*, 459.
https://doi.org/10.3390/e19090459

**AMA Style**

De Sousa Lima FW.
The KCOD Model on (3,4,6,4) and (3^{4},6) Archimedean Lattices. *Entropy*. 2017; 19(9):459.
https://doi.org/10.3390/e19090459

**Chicago/Turabian Style**

De Sousa Lima, Francisco W.
2017. "The KCOD Model on (3,4,6,4) and (3^{4},6) Archimedean Lattices" *Entropy* 19, no. 9: 459.
https://doi.org/10.3390/e19090459