# Multivariate Dependence beyond Shannon Information

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Development

_{0},I

_{1}):O] into four nonnegative components: the information R that both inputs ${I}_{0}$ and ${I}_{1}$ redundantly provide the output O, the information ${U}_{0}$ that ${I}_{0}$ uniquely provides O, the information ${U}_{1}$ that ${I}_{1}$ uniquely provides O and, finally, the information S that both ${I}_{0}$ and ${I}_{1}$ synergistically or collectively provide O.

_{0},I

_{1}):O] as unique, one from each input ${I}_{i}$, corresponding to the dyadic sub-dependency shared by ${I}_{i}$ and O. Orthogonally, for the triadic distribution PID identifies one of the bits as redundant, stemming from ${X}_{1}={Y}_{1}={Z}_{1}$, and the other as synergistic, resulting from the xor relation among ${X}_{0}$, ${Y}_{0}$ and ${Z}_{0}$. These decompositions are displayed pictorially in Figure 4.

## 3. Discussion

## 4. Dyadic Camouflage and Dependency Diffusion

## 5. Conclusions

“The tools we use have a profound (and devious!) influence on our thinking habits, and, therefore, on our thinking abilities”.(Edsger W. Dijkstra [85])

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Appendix A. A Python Discrete Information Package

## References

- Kullback, S. Information Theory and Statistics; Dover: New York, NY, USA, 1968. [Google Scholar]
- Quastler, H. Information Theory in Biology; University of Illinois Press: Urbana-Champaign, IL, USA, 1953. [Google Scholar]
- Quastler, H. The status of information theory in biology—A roundtable discussion. In Symposium on Information Theory in Biology; Yockey, H.P., Ed.; Pergamon Press: New York, NY, USA, 1958; 399p. [Google Scholar]
- Kelly, J. A new interpretation of information rate. IRE Trans. Inf. Theory
**1956**, 2, 185–189. [Google Scholar] [CrossRef] - Brillouin, L. Science and Information Theory, 2nd ed.; Academic Press: New York, NY, USA, 1962. [Google Scholar]
- Bialek, W.; Rieke, F.; De Ruyter Van Steveninck, R.R.; Warland, D. Reading a neural code. Science
**1991**, 252, 1854–1857. [Google Scholar] [CrossRef] [PubMed] - Strong, S.P.; Koberle, R.; de Ruyter van Steveninck, R.R.; Bialek, W. Entropy and information in neural spike trains. Phys. Rev. Lett.
**1998**, 80, 197. [Google Scholar] [CrossRef] - Ulanowicz, R.E. The central role of information theory in ecology. In Towards an Information Theory of Complex Networks; Dehmer, M., Mehler, A., Emmert-Streib, F., Eds.; Springer: Berlin, Germany, 2011; pp. 153–167. [Google Scholar]
- Grandy, W.T., Jr. Entropy and the Time Evolution of Macroscopic Systems; Oxford University Press: Oxford, UK, 2008; Volume 141. [Google Scholar]
- Harte, J. Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics. Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Nalewajski, R.F. Information Theory of Molecular Systems; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Garland, J.; James, R.G.; Bradley, E. Model-free quantification of time-series predictability. Phys. Rev. E
**2014**, 90, 052910. [Google Scholar] [CrossRef] [PubMed] - Kafri, O. Information theoretic approach to social networks. J. Econ. Soc. Thought
**2017**, 4, 77. [Google Scholar] - Varn, D.P.; Crutchfield, J.P. Chaotic crystallography: How the physics of information reveals structural order in materials. Curr. Opin. Chem. Eng.
**2015**, 777, 47–56. [Google Scholar] - Varn, D.P.; Crutchfield, J.P. What did Erwin mean? The physics of information from the materials genomics of aperiodic crystals and water to molecular information catalysts and life. Phil. Trans. R. Soc. A
**2016**, 374. [Google Scholar] [CrossRef] [PubMed] - Zhou, X.-Y.; Rong, C.; Lu, T.; Zhou, P.; Liu, S. Information functional theory: Electronic properties as functionals of information for atoms and molecules. J. Phys. Chem. A
**2016**, 120, 3634–3642. [Google Scholar] [CrossRef] [PubMed] - Kirst, C.; Timme, M.; Battaglia, D. Dynamic information routing in complex networks. Nat. Commun.
**2016**, 7, 11061. [Google Scholar] [CrossRef] [PubMed] - Izquierdo, E.J.; Williams, P.L.; Beer, R.D. Information flow through a model of the C. elegans klinotaxis circuit. PLoS ONE
**2015**, 10, e0140397. [Google Scholar] - James, R.G.; Burke, K.; Crutchfield, J.P. Chaos forgets and remembers: Measuring information creation, destruction, and storage. Phys. Lett. A
**2014**, 378, 2124–2127. [Google Scholar] [CrossRef] - Schreiber, T. Measuring information transfer. Phys. Rev. Lett.
**2000**, 85, 461. [Google Scholar] [CrossRef] [PubMed] - Fiedor, P. Partial mutual information analysis of financial networks. Acta Phys. Pol. A
**2015**, 127, 863–867. [Google Scholar] [CrossRef] - Sun, J.; Bollt, E.M. Causation entropy identifies indirect influences, dominance of neighbors and anticipatory couplings. Phys. D Nonlinear Phenom.
**2014**, 267, 49–57. [Google Scholar] [CrossRef] - Lizier, J.T.; Prokopenko, M.; Zomaya, A.Y. Local information transfer as a spatiotemporal filter for complex systems. Phys. Rev. E
**2008**, 77. [Google Scholar] [CrossRef] [PubMed] - Walker, S.I.; Kim, H.; Davies, P.C.W. The informational architecture of the cell. Phil. Trans. R. Soc. A
**2016**, 273. [Google Scholar] [CrossRef] [PubMed] - Lee, U.; Blain-Moraes, S.; Mashour, G.A. Assessing levels of consciousness with symbolic analysis. Phil. Trans. R. Soc. Lond. A
**2015**, 373. [Google Scholar] [CrossRef] [PubMed] - Maurer, U.; Wolf, S. The intrinsic conditional mutual information and perfect secrecy. In Proceedings of the 1997 IEEE International Symposium on Information Theory, Ulm, Germany, 29 June–4 July 1997; p. 8. [Google Scholar]
- Renner, R.; Skripsky, J.; Wolf, S. A new measure for conditional mutual information and its properties. In Proceedings of the 2003 IEEE International Symposium on Information Theory, Yokohama, Japan, 29 June–4 July 2003; p. 259. [Google Scholar]
- James, R.G.; Barnett, N.; Crutchfield, J.P. Information flows? A critique of transfer entropies. Phys. Rev. Lett.
**2016**, 116, 238701. [Google Scholar] [CrossRef] [PubMed] - Williams, P.L.; Beer, R.D. Nonnegative decomposition of multivariate information. arXiv, 2010; arXiv:1004.2515. [Google Scholar]
- Bertschinger, N.; Rauh, J.; Olbrich, E.; Jost, J. Shared information: New insights and problems in decomposing information in complex systems. In Proceedings of the European Conference on Complex Systems 2012; Springer: Berlin, Germany, 2013; pp. 251–269. [Google Scholar]
- Lizier, J.T. The Local Information Dynamics of Distributed Computation in Complex Systems. Ph.D. Thesis, University of Sydney, Sydney, Austrilia, 2010. [Google Scholar]
- Ay, N.; Polani, D. Information flows in causal networks. Adv. Complex Syst.
**2008**, 11, 17–41. [Google Scholar] [CrossRef] - Chicharro, D.; Ledberg, A. When two become one: The limits of causality analysis of brain dynamics. PLoS ONE
**2012**, 7, e32466. [Google Scholar] [CrossRef] [PubMed] - Lizier, J.T.; Prokopenko, M. Differentiating information transfer and causal effect. Eur. Phys. J. B Condens. Matter Complex Syst.
**2010**, 73, 605–615. [Google Scholar] [CrossRef] - Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Yeung, R.W. A First Course in Information Theory; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Csiszar, I.; Körner, J. Information Theory: Coding Theorems for Discrete Memoryless Systems; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- MacKay, D.J.C. Information Theory, Inference and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Griffith, V.; Koch, C. Quantifying synergistic mutual information. In Guided Self-Organization: Inception; Springer: Berlin, Germany, 2014; pp. 159–190. [Google Scholar]
- Cook, M. Networks of Relations. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 2005. [Google Scholar]
- Merchan, L.; Nemenman, I. On the sufficiency of pairwise interactions in maximum entropy models of networks. J. Stat. Phys.
**2016**, 162, 1294–1308. [Google Scholar] [CrossRef] - Reza, F.M. An Introduction to Information Theory; Courier Corporation: North Chelmsford, MA, USA, 1961. [Google Scholar]
- Yeung, R.W. A new outlook on Shannon’s information measures. IEEE Trans. Inf. Theory
**1991**, 37, 466–474. [Google Scholar] [CrossRef] - Bell, A.J. The co-information lattice. In Proceedings of the 4th International Workshop on Independent Component Analysis and Blind Signal Separation, Nara, Japan, 1–4 April 2003; Amari, S.M.S., Cichocki, A., Murata, N., Eds.; Springer: New York, NY, USA, 2003; Volume ICA 2003, pp. 921–926. [Google Scholar]
- Bettencourt, L.M.A.; Stephens, G.J.; Ham, M.I.; Gross, G.W. Functional structure of cortical neuronal networks grown in vitro. Phys. Rev. E
**2007**, 75, 021915. [Google Scholar] [CrossRef] [PubMed] - Krippendorff, K. Information of interactions in complex systems. Int. J. Gen. Syst.
**2009**, 38, 669–680. [Google Scholar] [CrossRef] - Watanabe, S. Information theoretical analysis of multivariate correlation. IBM J. Res. Dev.
**1960**, 4, 66–82. [Google Scholar] [CrossRef] - Han, T.S. Linear dependence structure of the entropy space. Inf. Control
**1975**, 29, 337–368. [Google Scholar] [CrossRef] - Chan, C.; Al-Bashabsheh, A.; Ebrahimi, J.B.; Kaced, T.; Liu, T. Multivariate mutual information inspired by secret-key agreement. Proc. IEEE
**2015**, 103, 1883–1913. [Google Scholar] [CrossRef] - James, R.G.; Ellison, C.J.; Crutchfield, J.P. Anatomy of a bit: Information in a time series observation. Chaos Interdiscip. J. Nonlinear Sci.
**2011**, 21, 037109. [Google Scholar] [CrossRef] [PubMed] - Lamberti, P.W.; Martin, M.T.; Plastino, A.; Rosso, O.A. Intensive entropic non-triviality measure. Physica A
**2004**, 334, 119–131. [Google Scholar] [CrossRef] - Massey, J. Causality, feedback and directed information. In Proceedings of the International Symposium on Information Theory and Its Applications, Waikiki, HI, USA, 27–30 November 1990; Volume ISITA-90, pp. 303–305. [Google Scholar]
- Marko, H. The bidirectional communication theory: A generalization of information theory. IEEE Trans. Commun.
**1973**, 21, 1345–1351. [Google Scholar] [CrossRef] - Bettencourt, L.M.A.; Gintautas, V.; Ham, M.I. Identification of functional information subgraphs in complex networks. Phys. Rev. Lett.
**2008**, 100, 238701. [Google Scholar] [CrossRef] [PubMed] - Bar-Yam, Y. Multiscale complexity/entropy. Adv. Complex Syst.
**2004**, 7, 47–63. [Google Scholar] [CrossRef] - Allen, B.; Stacey, B.C.; Bar-Yam, Y. Multiscale Information Theory and the Marginal Utility of Information. Entropy
**2017**, 19, 273. [Google Scholar] [CrossRef] - Gács, P.; Körner, J. Common information is far less than mutual information. Probl. Control Inf.
**1973**, 2, 149–162. [Google Scholar] - Tyagi, H.; Narayan, P.; Gupta, P. When is a function securely computable? IEEE Trans. Inf. Theory
**2011**, 57, 6337–6350. [Google Scholar] [CrossRef] - Ay, N.; Olbrich, E.; Bertschinger, N.; Jost, J. A unifying framework for complexity measures of finite systems. In Proceedings of the European Conference on Complex Systems 2006 (ECCS06); European Complex Systems Society (ECSS): Paris, France, 2006. [Google Scholar]
- Verdu, S.; Weissman, T. The information lost in erasures. IEEE Trans. Inf. Theory
**2008**, 54, 5030–5058. [Google Scholar] [CrossRef] - Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 20 June–30 July 1960; pp. 547–561. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys.
**1988**, 52, 479–487. [Google Scholar] [CrossRef] - Abdallah, S.A.; Plumbley, M.D. A measure of statistical complexity based on predictive information with application to finite spin systems. Phys. Lett. A
**2012**, 376, 275–281. [Google Scholar] [CrossRef] [Green Version] - McGill, W.J. Multivariate information transmission. Psychometrika
**1954**, 19, 97–116. [Google Scholar] [CrossRef] - Wyner, A.D. The common information of two dependent random variables. IEEE Trans. Inf. Theory
**1975**, 21, 163–179. [Google Scholar] [CrossRef] - Liu, W.; Xu, G.; Chen, B. The common information of n dependent random variables. In Proceedings of the 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 29 September–1 October 2010; pp. 836–843. [Google Scholar]
- Kumar, G.R.; Li, C.T.; El Gamal, A. Exact common information. In Proceedings of the 2014 IEEE International Symposium on Information Theory (ISIT), Honolulu, HI, USA, 29 June–4 July 2014; pp. 161–165. [Google Scholar]
- Lad, F.; Sanfilippo, G.; Agrò, G. Extropy: Complementary dual of entropy. Stat. Sci.
**2015**, 30, 40–58. [Google Scholar] [CrossRef] - Jelinek, F.; Mercer, R.L.; Bahl, L.R.; Baker, J.K. Perplexity—A measure of the difficulty of speech recognition tasks. J. Acoust. Soc. Am.
**1977**, 62, S63. [Google Scholar] [CrossRef] - Schneidman, E.; Still, S.; Berry, M.J.; Bialek, W. Network information and connected correlations. Phys. Rev. Lett.
**2003**, 91, 238701. [Google Scholar] [CrossRef] [PubMed] - Pearl, J. Causality; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Williams, P.L.; Beer, R.D. Generalized measures of information transfer. arXiv, 2011; arXiv:1102.1507. [Google Scholar]
- Bertschinger, N.; Rauh, J.; Olbrich, E.; Jost, J.; Ay, N. Quantifying unique information. Entropy
**2014**, 16, 2161–2183. [Google Scholar] [CrossRef] - Harder, M.; Salge, C.; Polani, D. Bivariate measure of redundant information. Phys. Rev. E
**2013**, 87, 012130. [Google Scholar] [CrossRef] [PubMed] - Griffith, V.; Chong, E.K.P.; James, R.G.; Ellison, C.J.; Crutchfield, J.P. Intersection information based on common randomness. Entropy
**2014**, 16, 1985–2000. [Google Scholar] [CrossRef] - Ince, R.A.A. Measuring multivariate redundant information with pointwise common change in surprisal. arXiv, 2016; arXiv:1602.05063. [Google Scholar]
- Albantakis, L.; Oizumi, M.; Tononi, G. From the phenomenology to the mechanisms of consciousness: Integrated information theory 3.0. PLoS Comput. Biol.
**2014**, 10, e1003588. [Google Scholar] - Takemura, S.; Bharioke, A.; Lu, Z.; Nern, A.; Vitaladevuni, S.; Rivlin, P.K.; Katz, W.T.; Olbris, D.J.; Plaza, S.M.; Winston, P.; et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature
**2013**, 500, 175–181. [Google Scholar] [CrossRef] [PubMed] - Rosas, F.; Ntranos, V.; Ellison, C.J.; Pollin, S.; Verhelst, M. Understanding interdependency through complex information sharing. Entropy
**2016**, 18, 38. [Google Scholar] [CrossRef] - Ince, R.A. The Partial Entropy Decomposition: Decomposing multivariate entropy and mutual information via pointwise common surprisal. Entropy
**2017**, 19, 318. [Google Scholar] [CrossRef] - Pica, G.; Piasini, E.; Chicharro, D.; Panzeri, S. Invariant components of synergy, redundancy, and unique information among three variables. Entropy
**2017**, 19, 451. [Google Scholar] [CrossRef] - Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman: New York, NY, USA, 1979. [Google Scholar]
- Chen, Q.; Cheng, F.; Lie, T.; Yeung, R.W. A marginal characterization of entropy functions for conditional mutually independent random variables (with application to Wyner’s common information). In Proceedings of the 2015 IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, 14–19 June 2015; pp. 974–978. [Google Scholar]
- Shannon, C.E. The bandwagon. IEEE Trans. Inf. Theory
**1956**, 2, 3. [Google Scholar] [CrossRef] - Dijkstra, E.W. How do we tell truths that might hurt? In Selected Writings on Computing: A Personal Perspective; Springer: Berlin, Germany, 1982; pp. 129–131. [Google Scholar]
- Jupyter. Available online: https://github.com/jupyter/notebook (accessed on 7 October 2017).
- James, R.G.; Ellison, C.J.; Crutchfield, J.P. Dit: Discrete Information Theory in Python. Available online: https://github.com/dit/dit (accessed on 7 October 2017).

**Figure 1.**Dependency structure for the (

**a**) dyadic and (

**b**) triadic distributions. Here, ∼ denotes that two or more variables are distributed identically, and ⊕ denotes the enclosed variables form the xor relation. Note that although these dependency structures are fundamentally distinct, their information diagrams (Figure 2) are identical.

**Figure 2.**Information diagrams for the (

**a**) dyadic and (

**b**) triadic distributions. For the three-variable distributions depicted here, the diagram consists of seven atoms: three conditional entropies (each with value 0 bit), three conditional mutual information (each with value 1 bit) and one co-information (0 bit). Note that the two diagrams are identical, meaning that although the two distributions are fundamentally distinct, no standard information-theoretic measure can differentiate the two.

**Figure 3.**Suite of information expansions applied to the dyadic and triadic distributions: the complexity profile [55], the marginal utility of information [56] and the connected information [70]. The complexity profile and marginal utility of information profiles are identical for the two distributions as a consequence of the information diagrams (Figure 2) being identical. The connected information, quantifying the amount of dependence realized by fixing k-way marginals, is able to distinguish the two distributions. Note that although each of the x-axes is a scale, exactly what that means depends on the measure. Furthermore, while the scale for both the complexity profile and the connected information is discrete, the scale for the marginal utility of information is continuous.

**Figure 4.**Partial information decomposition diagrams for the (

**a**) dyadic and (

**b**) triadic distributions. Here, X and Y are treated as inputs and Z as output, but in both cases, the decomposition is invariant to permutations of the variables. In the dyadic case, the relationship is realized as 1 bit of unique information from X to Z and 1 bit of unique information from Y to Z. In the triadic case, the relationship is quantified as X and Y providing 1 bit of redundant information about Z while also supplying 1 bit of information synergistically about Z.

**Figure 5.**Dyadic camouflage distribution: This distribution, when uniformly and independently mixed with the four-variable parity distribution (in which each variable is the parity of the other three), results in a distribution whose I-diagram incorrectly implies that the distribution contains only dyadic dependencies. The atoms of the camouflage distribution are constructed so that they cancel out the “interior” atoms of the parity distribution (whose $\mathrm{I}[W:X:Y|Z]=\mathrm{I}[W:X:Z|Y]=\mathrm{I}[W:Y:Z|X]=\mathrm{I}[X:Y:Z|W=-1]$ and $\mathrm{I}[W:X:Y:Z=1]$), leaving just the parity distribution’s pairwise conditional atoms: $\mathrm{I}[W:X|YZ]$, $\mathrm{I}[W:Y|XZ]$, $\mathrm{I}[W:Z|XY]$, $\mathrm{I}[X:Y|WZ]$, $\mathrm{I}[X:Z|WY]$, and $\mathrm{I}[Y:Z|WX]$, all equal to one, while all others are zero.

**Table 1.**The (a) dyadic and (b)triadic probability distributions over the three random variables X, Y and Z that take values in the four-letter alphabet $\{0,1,2,3\}$. Though not directly apparent from their tables of joint probabilities, the dyadic distribution is built from dyadic (pairwise) sub-dependencies, while the triadic from triadic (three-way) sub-dependencies.

(a) Dyadic | (b) Triadic | ||||||
---|---|---|---|---|---|---|---|

X | Y | Z | Pr | X | Y | Z | Pr |

0 | 0 | 0 | 1/8 | 0 | 0 | 0 | 1/8 |

0 | 2 | 1 | 1/8 | 1 | 1 | 1 | 1/8 |

1 | 0 | 2 | 1/8 | 0 | 2 | 2 | 1/8 |

1 | 2 | 3 | 1/8 | 1 | 3 | 3 | 1/8 |

2 | 1 | 0 | 1/8 | 2 | 0 | 2 | 1/8 |

2 | 3 | 1 | 1/8 | 3 | 1 | 3 | 1/8 |

3 | 1 | 2 | 1/8 | 2 | 2 | 0 | 1/8 |

3 | 3 | 3 | 1/8 | 3 | 3 | 1 | 1/8 |

**Table 2.**Expansion of the (a) dyadic and (b) triadic distributions. In both cases, the variables from Table 1 were interpreted as two binary random variables, translating, e.g., $X=3$ into $({X}_{0},{X}_{1})=(1,1)$. In this light, it becomes apparent that the dyadic distribution consists of the sub-dependencies ${X}_{0}={Y}_{1}$, ${Y}_{0}={Z}_{1}$ and ${Z}_{0}={X}_{1}$, while the triadic distribution consists of ${X}_{0}+{Y}_{0}+{Z}_{0}=0\phantom{\rule{3.33333pt}{0ex}}mod\phantom{\rule{0.277778em}{0ex}}2$ and ${X}_{1}={Y}_{1}={Z}_{1}$. These relationships are pictorially represented in Figure 1.

(a) Dyadic | (b) Triadic | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

X | Y | Z | X | Y | Z | |||||||||||||||

X_{0} | X_{1} | Y_{0} | Y_{1} | Z_{0} | Z_{1} | Pr | X_{0} | X_{1} | Y_{0} | Y_{1} | Z_{0} | Z_{1} | Pr | |||||||

0 | 0 | 0 | 0 | 0 | 0 | 1/8 | 0 | 0 | 0 | 0 | 0 | 0 | 1/8 | |||||||

0 | 0 | 1 | 0 | 0 | 1 | 1/8 | 0 | 1 | 0 | 1 | 0 | 1 | 1/8 | |||||||

0 | 1 | 0 | 0 | 1 | 0 | 1/8 | 0 | 0 | 1 | 0 | 1 | 0 | 1/8 | |||||||

0 | 1 | 1 | 0 | 1 | 1 | 1/8 | 0 | 1 | 1 | 1 | 1 | 1 | 1/8 | |||||||

1 | 0 | 0 | 1 | 0 | 0 | 1/8 | 1 | 0 | 0 | 0 | 1 | 0 | 1/8 | |||||||

1 | 0 | 1 | 1 | 0 | 1 | 1/8 | 1 | 1 | 0 | 1 | 1 | 1 | 1/8 | |||||||

1 | 1 | 0 | 1 | 1 | 0 | 1/8 | 1 | 0 | 1 | 0 | 0 | 0 | 1/8 | |||||||

1 | 1 | 1 | 1 | 1 | 1 | 1/8 | 1 | 1 | 1 | 1 | 0 | 1 | 1/8 |

**Table 3.**Suite of information measures applied to the dyadic and triadic distributions, where: H [•] is the Shannon entropy [35], H

_{2}[•] is the order-2 Rényi entropy [61], S

_{q}[•] is the Tsallis entropy [62], I [•] is the co-information [44], T [•] is the total correlation [47], B [•] is the dual total correlation [48,63], J [•] is the CAEKL mutual information [49], II [•] is the interaction information [64], K [•] is the Gács–Körner common information [57], C [•] is the Wyner common information [65,66], G [•] is the exact common information [67], F [•] is the functional common information,${}^{\mathrm{a}}$ M [•] is the MSS common information,${}^{\mathrm{b}}$ I [• ↓ •] is the intrinsic mutual information [26],${}^{\mathrm{c}}$ I [• ⇓ •] is the reduced intrinsic mutual information [27],${}^{\mathrm{c},\mathrm{d}}$ X [•] is the extropy [68], R [•] is the residual entropy or erasure entropy [60,63], P [•] is the perplexity [69], D [•] is the disequilibrium [51], C

_{LMRP}[•] is the LMRP complexity [51] and TSE [•] is the TSE complexity [59]. Only the Gács–Körner common information and the intrinsic mutual information, highlighted, are able to distinguish the two distributions; the Gács–Körner common information via the construction of a sub-variable (${X}_{1}={Y}_{1}={Z}_{1}$) common to X, Y and Z and the intrinsic mutual information via the relationship ${X}_{0}={Y}_{1}$ being independent of Z.

Measures | Dyadic | Triadic | ||
---|---|---|---|---|

H [X,Y,Z] | 3 bit | 3 bit | ||

H_{2} [X,Y,Z] | 3 bit | 3 bit | ||

S_{2} [X,Y,Z] | 0.875 bit | 0.875 bit | ||

I [X:Y:Z] | 0 bit | 0 bit | ||

T [X:Y:Z] | 3 bit | 3 bit | ||

B [X:Y:Z] | 3 bit | 3 bit | ||

J [X:Y:Z] | 1.5 bit | 1.5 bit | ||

II [X:Y:Z] | 0 bit | 0 bit | ||

K [X:Y:Z] | 0 bit | 1 bit | ||

C [X:Y:Z] | 3 bit | 3 bit | ||

G [X:Y:Z] | 3 bit | 3 bit | ||

F [X:Y:Z] ${}^{\mathrm{a}}$ | 3 bit | 3 bit | ||

M [X:Y:Z] ${}^{\mathrm{b}}$ | 3 bit | 3 bit | ||

I [X:Y↓Z] ${}^{\mathrm{c}}$ | 1 bit | 0 bit | ||

I [X:Y⇓Z] ${}^{\mathrm{c},\mathrm{d}}$ | 1 bit | 0 bit | ||

X [X,Y,Z] | 1.349 bit | 1.349 bit | ||

R [X:Y:Z] | 0 bit | 0 bit | ||

P [X,Y,Z] | 8 | 8 | ||

D [X,Y,Z] | 0.761 bit | 0.761 bit | ||

C_{LMRP} [X,Y,Z] | 0.381 bit | 0.381 bit | ||

TSE [X:Y:Z] | 2 bit | 2 bit |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

James, R.G.; Crutchfield, J.P.
Multivariate Dependence beyond Shannon Information. *Entropy* **2017**, *19*, 531.
https://doi.org/10.3390/e19100531

**AMA Style**

James RG, Crutchfield JP.
Multivariate Dependence beyond Shannon Information. *Entropy*. 2017; 19(10):531.
https://doi.org/10.3390/e19100531

**Chicago/Turabian Style**

James, Ryan G., and James P. Crutchfield.
2017. "Multivariate Dependence beyond Shannon Information" *Entropy* 19, no. 10: 531.
https://doi.org/10.3390/e19100531