Next Article in Journal
Selecting Video Key Frames Based on Relative Entropy and the Extreme Studentized Deviate Test
Next Article in Special Issue
The Free Energy Requirements of Biological Organisms; Implications for Evolution
Previous Article in Journal
Two Universality Properties Associated with the Monkey Model of Zipf’s Law
Previous Article in Special Issue
Relative Entropy in Biological Systems

Maximizing Diversity in Biology and Beyond

by 1,2,* and 3,*
School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, UK
Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G12 8QQ, UK
Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, OH 44106, USA
Authors to whom correspondence should be addressed.
Academic Editors: John Baez, John Harte and Marc Harper
Entropy 2016, 18(3), 88;
Received: 19 December 2015 / Revised: 22 February 2016 / Accepted: 24 February 2016 / Published: 9 March 2016
(This article belongs to the Special Issue Information and Entropy in Biological Systems)
Entropy, under a variety of names, has long been used as a measure of diversity in ecology, as well as in genetics, economics and other fields. There is a spectrum of viewpoints on diversity, indexed by a real parameter q giving greater or lesser importance to rare species. Leinster and Cobbold (2012) proposed a one-parameter family of diversity measures taking into account both this variation and the varying similarities between species. Because of this latter feature, diversity is not maximized by the uniform distribution on species. So it is natural to ask: which distributions maximize diversity, and what is its maximum value? In principle, both answers depend on q, but our main theorem is that neither does. Thus, there is a single distribution that maximizes diversity from all viewpoints simultaneously, and any list of species has an unambiguous maximum diversity value. Furthermore, the maximizing distribution(s) can be computed in finite time, and any distribution maximizing diversity from some particular viewpoint q > 0 actually maximizes diversity for all q. Although we phrase our results in ecological terms, they apply very widely, with applications in graph theory and metric geometry. View Full-Text
Keywords: diversity; biodiversity; species similarity; entropy; Rényi entropy; maximum entropy; metric entropy; Hill number; maximum clique diversity; biodiversity; species similarity; entropy; Rényi entropy; maximum entropy; metric entropy; Hill number; maximum clique
Show Figures

Figure 1

MDPI and ACS Style

Leinster, T.; Meckes, M.W. Maximizing Diversity in Biology and Beyond. Entropy 2016, 18, 88.

AMA Style

Leinster T, Meckes MW. Maximizing Diversity in Biology and Beyond. Entropy. 2016; 18(3):88.

Chicago/Turabian Style

Leinster, Tom, and Mark W. Meckes. 2016. "Maximizing Diversity in Biology and Beyond" Entropy 18, no. 3: 88.

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop