On Analytical Solutions of the Fractional Differential Equation with Uncertainty: Application to the Basset Problem
Abstract
:1. Introduction
2. Preliminaries
- u is upper semi-continuous,
- u is fuzzy convex, i.e., for all x, y ∈ R, λ ∈ [0, 1]: u(λx + (1 – λ)y) ≥ min{u(x), u(y)},
- u is normal, i.e., ∃ x0 ∈ R for which u(x0) = 1,
- supp u = {x ∈ R | u(x) > 0} is the support of the u, and its closure cl(supp u) is compact.
- (r) is a bounded non-decreasing left continuous function in (0, 1] and right continuous at zero,
- (r) is a bounded non-increasing left continuous function in (0, 1] and right continuous at zero,
- (r) ≤ (r), 0 ≤ r ≤ 1.
- d(u ⊕ w, v ⊕ w) = d(u, v), ∀u, v, w ∈ E,
- d(k ⊙ u, k ⊙ v) = |k|d(u, v), ∀k ∈ R, u, v ∈ E,
- d(u ⊕ v, w ⊕ e) ≤ d(u, w) + d(v, e), ∀u, v, w, e ∈ E,
- (E, d) is a complete metric space.
- for all h > 0 sufficiently small, ∃f(x0 + h) ⊝ f(x0), ∃f(x0) ⊝ f(x0 − h) and the limits (in the metric d):
- for all h > 0 sufficiently small, ∃f(x0) ⊖ f(x0 + h), ∃f(x0 h) ⊖ f(x0) and the limits (in the metric d):
- for all h > 0 sufficiently small, ∃f(x0 + h) ⊖ f(x0), ∃f(x0−h) ⊖ f(x0) and the limits (in the metric d):
- for all h > 0 sufficiently small, ∃f(x0) ⊖ f(x0 + h), ∃f(x0) ⊖ f(x0 − h) and the limits (in the metric d): (h and −h at denominators mean and, respectively).
- If f is a (1)-differentiable function, then and are differentiable functions and,
- If f is a (2)-differentiable function, then and are differentiable functions and.
3. Caputo’s H-Differentiability
- If f is a RL[(1) − β]-differentiable fuzzy-valued function, then:
- If f(x) is a RL[(2) − β]-differentiable fuzzy-valued function, then:
4. The Fuzzy Laplace Transforms
4.1. Proposed Solution
5. FFDEs under Caputo’s H-Differentiability
6. Application
7. Conclusion and Future Works
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Arara, A.; Benchohra, M.; Hamidi, N.; Nieto, J. Fractional order differential equations on an unbounded domain. Nonlinear Anal. Theory Methods Appl 2010, 72, 580–586. [Google Scholar]
- Bagley, R.L. On the fractional order initial value problem and its engineering applications. Fract. Calc. Appl 1990, 12–20. [Google Scholar]
- Beyer, H.; Kempfle, S. Definition of physically consistent damping laws with fractional derivatives. Zeitschrift für Angewandte Mathematik und Mechanik 1995, 75, 623–635. [Google Scholar]
- Diethelm, K.; Ford, N. Analysis of fractional differential equations. J. Math. Anal. App 2002, 265, 229–248. [Google Scholar]
- Mainardi, F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 1996, 7, 1461–1477. [Google Scholar]
- Ingo, C.; Magin, R.L.; Parrish, T.B. New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis. Entropy 2014, 16, 5838–5852. [Google Scholar]
- Baleanu, D.; Güvenc, Z.; Tenreiro Machado, J. New Trends in Nanotechnology and Fractional Calculus Applications; Springer-Verlag: Berlin, Germany, 2010. [Google Scholar]
- Dorčák, L.; Valsa, J.; Gonzalez, E.; Terpák, J.; Petráš, I.; Pivka, L. Analogue Realization of Fractional-Order Dynamical Systems. Entropy 2013, 15, 4199–4214. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier Science: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. Fractional Calculus: Models and Numerical Methods; World Scientific: Singapore, Singapore, 2012. [Google Scholar]
- Khan, Y.; Wu, Q.; Faraz, N.; Yildirim, A.; Madani, M. A new fractional analytical approach via a modified Riemann-Liouville derivative. Appl. Math. Lett 2012, 25, 1340–1346. [Google Scholar]
- Lakshmikantham, V.; Vatsala, A.S. General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Lett 2012, 25, 1340–1346. [Google Scholar]
- El-Ajou, A.; Abu Arqub, O.; Al Zhour, Z.; Momani, S. New Results on Fractional Power Series: Theories and Applications. Fuzzy Sets Syst 2013, 15, 5305–5323. [Google Scholar]
- Momani, S.; Aslam Noor, M. Numerical methods for fourth-order fractional integro-differential equations. Appl. Math. Comput 2006, 182, 754–760. [Google Scholar]
- Bhrawy, A.; Alofi, A.; Ezz-Eldien, S. A quadrature tau method for fractional differential equations with variable coefficients. Appl. Math. Lett 2011, 24, 2146–2152. [Google Scholar]
- Bhrawy, A.H.; Zaky, M.A. A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys 2015, 281, 876–895. [Google Scholar]
- Bhrawy, A.H.; Doha, E.H.; Baleanu, D.; Ezz-Eldien, S.S. A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys 2015, in press. [Google Scholar]
- Bhrawy, A.H.; Zaky, M.A.; Baleanu, D. New Numerical Approximations for Space-Time Fractional Burgers’ Equations via a Legendre Spectral-Collocation Method. Rom. Rep. Phys 2015, 67. In press. [Google Scholar]
- Bhrawy, A.H.; Tharwat, M.M.; Yildirim, A. A new formula for fractional integrals of Chebyshev polynomials: Application for solving multi-term fractional differential equations. Appl. Math. Model 2013, 37, 4245–4252. [Google Scholar]
- Zhang, L.; Ahmad, B.; Wang, G. The existence of an extremal solution to a nonlinear system with the right-handed Riemann-Liouville fractional derivative. Appl. Math. Lett 2014, 31, 1–6. [Google Scholar]
- Lakshmikantham, V.; Vatsala, A. Basic theory of fractional differential equations. Nonlinear Anal. Theory Methods Appl 2008, 69, 2677–2682. [Google Scholar]
- Felice, D.; Cafaro, C.; Mancini, S. Information Geometric Complexity of a Trivariate Gaussian Statistical Model. Entropy 2014, 16, 2944–2958. [Google Scholar]
- Sun, J.; Cafaro, C.; Bollt, E.M. Identifying the Coupling Structure in Complex Systems through the Optimal Causation Entropy Principle. Entropy 2014, 16, 3416–3433. [Google Scholar]
- Agarwal, R.; Lakshmikantham, V.; Nieto, J. On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. Theory Methods Appl 2000, 72, 2859–2862. [Google Scholar]
- Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft Comput 2012, 16, 297–302. [Google Scholar]
- Mazandarani, M.; Vahidian Kamyad, A. Modified fractional Euler method for solving Fuzzy Fractional Initial Value Problem. Commun. Nonlinear Sci. Numer. Simulat 2013, 18, 12–21. [Google Scholar]
- Salahshour, S.; Allahviranloo, T.; Abbasbandy, S. Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun. Nonlinear Sci. Numer. Simul 2012, 17, 1372–1381. [Google Scholar]
- Allahviranloo, T.; Ahmadi, M. Fuzzy laplace transforms. Soft Comput 2010, 14, 235–243. [Google Scholar]
- Mazandarani, M.; Najariyan, M. Type-2 fuzzy fractional derivatives. Commun. Nonlinear Sci. Numer. Simul 2014, 19, 2354–2372. [Google Scholar]
- Bede, B.; Gal, S. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst 2005, 151, 581–599. [Google Scholar]
- Bede, B.; Rudas, I.; Bencsik, A. First order linear fuzzy differential equations under generalized differentiability. Inf. Sci 2007, 177, 1648–1662. [Google Scholar]
- Ahmadian, A.; Suleiman, M.; Salahshour, S.; Baleanu, D. A Jacobi operational matrix for solving a fuzzy linear fractional differential equation. Adv. Diff. Equ 2013, 104. [Google Scholar] [CrossRef]
- Ahmadian, A.; Suleiman, M.; Salahshour, S. An operational matrix based on Legendre polynomials for solving fuzzy fractional-order differential equations. Abstr. Appl. Anal. [CrossRef]
- Balooch Shahriyar, M.R.; Ismail, F.; Aghabeigi, S.; Ahmadian, A.; Salahshour, S. An Eigenvalue-Eigenvector Method for Solving a System of Fractional Differential Equations with Uncertainty. Math. Probl. Eng. [CrossRef]
- Salahshour, S.; Allahviranloo, T.; Abbasbandy, S.; Baleanu, D. Existence and uniqueness results for fractional differential equations with uncertainty. Adv. Diff. Equ 2012, 112. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Abbasbandy, S.; Balooch Shahryari, M.R.; Salahshour, S.; Baleanu, D. On Solutions of Linear Fractional Differential Equations with Uncertainty. Abstr. Appl. Anal. [CrossRef]
- Diamond, P. Theory and applications of fuzzy Volterra integral equations. IEEE Trans. Fuzzy Syst 2002, 157, 97–102. [Google Scholar]
- Perfilieva, I. Cauchy problem with fuzzy initial condition and its approximate solution with the help of fuzzy transform, Proceedings of IEEE International Conference on Fuzzy Systems, 2008 (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008; pp. 2285–2290.
- Jafarian, A.; Golmankhaneh, A.R.; Baleanu, D. On Fuzzy Fractional Laplace Transformation. Inf. Control. [CrossRef]
- Diamond, P.; Kloeden, P. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, Singapore, 1994. [Google Scholar]
- Zimmermann, H. Fuzzy Set Theory And Its Applications; Springer-Verlag: Berlin, Germany, 2001. [Google Scholar]
- Friedman, M.; Ma, M.; Kandel, A. Numerical solutions of fuzzy differential and integral equations. Fuzzy Sets Syst 1999, 106, 35–48. [Google Scholar]
- Puri, M.; Ralescu, D. Fuzzy random variables. J. Math. Anal. Appl 1986, 114, 409–422. [Google Scholar]
- Wu, H-C. The improper fuzzy Riemann integral and its numerical integration. Inf. Sci 1998, 111, 109–137. [Google Scholar]
- Chalco-Cano, Y.; Román-Flores, H. On new solutions of fuzzy differential equations. Chaos Solitons Fractals 2008, 38, 112–119. [Google Scholar]
- Alikhani, R.; Bahrami, F. Global solutions for nonlinear fuzzy fractional integral and integrodifferential equations. Commun. Nonlinear Sci. Numer. Simul 2013, 18, 2007–2017. [Google Scholar]
- Salahshour, S.; Abbasbandy, S. A comment on “Global solutions for nonlinear fuzzy fractional integral and integrodifferential equations”. Commun. Nonlinear Sci. Numer. Simul 2014, 19, 1256–1258. [Google Scholar]
- Lupulescu, V. Fractional calculus for interval-valued functions. Fuzzy Sets Syst 2014. [Google Scholar] [CrossRef]
- Basset, A. A Treatise on Hydrodynamics: With Numerous Examples; Deighton, Bell and Co.: Cambridge, UK, 1888. [Google Scholar]
- Basset, A. The Descent of a Sphere in a Viscous Liquid. Nature 1910, 83, 521. [Google Scholar]
- Mainardi, F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 1996, 7, 1461–1477. [Google Scholar]
- Mainardi, F.; Pironi, P.; Tampieri, F. On a generalization of the Basset problem via Fractional Calculus, Proceedings of the 15th Canadian Congress of Applied Mechanics, CANCAM’95, University of Victoria, Victoria, Canada, 28 May–2 June 1995; pp. 836–837.
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salahshour, S.; Ahmadian, A.; Senu, N.; Baleanu, D.; Agarwal, P. On Analytical Solutions of the Fractional Differential Equation with Uncertainty: Application to the Basset Problem. Entropy 2015, 17, 885-902. https://doi.org/10.3390/e17020885
Salahshour S, Ahmadian A, Senu N, Baleanu D, Agarwal P. On Analytical Solutions of the Fractional Differential Equation with Uncertainty: Application to the Basset Problem. Entropy. 2015; 17(2):885-902. https://doi.org/10.3390/e17020885
Chicago/Turabian StyleSalahshour, Soheil, Ali Ahmadian, Norazak Senu, Dumitru Baleanu, and Praveen Agarwal. 2015. "On Analytical Solutions of the Fractional Differential Equation with Uncertainty: Application to the Basset Problem" Entropy 17, no. 2: 885-902. https://doi.org/10.3390/e17020885
APA StyleSalahshour, S., Ahmadian, A., Senu, N., Baleanu, D., & Agarwal, P. (2015). On Analytical Solutions of the Fractional Differential Equation with Uncertainty: Application to the Basset Problem. Entropy, 17(2), 885-902. https://doi.org/10.3390/e17020885