Symbolic Entropy of the Amplitude rather than the Instantaneous Frequency of EEG Varies in Dementia
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population
2.2. Data Collection
2.3. Four Sequences Derived from Each Channel of the EEG
2.4. Construction of Symbolic Sequences
2.5. Number of Forbidden Words and Surrogate Data
2.6. Steps, Sample Entropy and Others
2.7. Statistical Analysis
3. Results
3.1. Significant Group Differences Were Found Only after the Symbolization Procedure
3.2. The Symbolic Dynamics in the EEG Whole Tracing Were Only Found Again in the Local-Peak Voltage Sequence of the EEG
3.3. Correlations between the EEG Whole Tracing and the Local Peak Voltage Sequence
3.4. Effects of Photic Stimulation
3.5. The Number N of Words Used for Estimation of the Number of Forbidden Words
3.6. No Correlations Were Found Between Heartbeats and Brainwaves
3.7. Cognitive Tests
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Vecchio, F.; Babiloni, C.; Lizio, R.; Fallani Fde, V.; Blinowska, K.; Verrienti, G.; Frisoni, G.; Rossini, P.M. Resting state cortical EEG rhythms in Alzheimer’s disease: Toward EEG markers for clinical applications: A review. Suppl. Clin. Neurophysiol. 2013, 62, 223–236. [Google Scholar]
- Aurlien, H.; Gjerde, I.O.; Aarseth, J.H.; Eldøen, G.; Karlsen, B.; Skeidsvoll, H.; Gilhus, N.E. EEG background activity described by a large computerized database. Clin. Neurophysiol. 2004, 115, 665–673. [Google Scholar]
- Lackner, C.L.; Marshall, W.J.; Santesso, D.L.; Dywan, J.; Wade, T.; Segalowitz, S.J. Adolescent anxiety and aggression can be differentially predicted by electrocortical phase reset variables. Brain Cognit 2013, 89, 90–98. [Google Scholar]
- Garcia Dominguez, L.; Wennberg, R.A.; Gaetz, W.; Cheyne, D.; Snead, O.C., III; Perez Velazquez, J.L. Enhanced synchrony in epileptiform activity? Local versus distant phase synchronization in generalized seizures. J. Neurosci. 2005, 25, 8077–8084. [Google Scholar]
- Hong, L.E.; Summerfelt, A.; McMahon, R.; Adami, H.; Francis, G.; Elliott, A.; Buchanan, R.W.; Thaker, G.K. Evoked gamma band synchronization and the liability for schizophrenia. Schizophr. Res. 2004, 70, 293–302. [Google Scholar]
- Pijnenburg, Y.A.l.; van der Made, Y.; van Cappellen van Walsum, A.M.; Knol, D.L.; Scheltens, Ph.; Stam, C.J. EEG synchronization likelihood in mild cognitive impairment and Alzheimer’s disease during a working memory task. Clin. Neurophysiol. 2004, 115, 1332–1339. [Google Scholar]
- Stam, C.J.; van der Made, Y.; Pijnenburg, Y.A.; Scheltens, P. EEG synchronization in mild cognitive impairment and Alzheimer’s disease. Acta Neurol. Scand. 2003, 108, 90–96. [Google Scholar]
- Nunez, P. Electric Fields of the Brain: The Neurophysics of EEG; Oxford University Press: New York, NY, USA, 1981. [Google Scholar]
- Raichle, M.E. The brain’s dark energy. Science 2006, 314, 1249–1250. [Google Scholar]
- Zhang, D.; Raichle, M.E. Disease and the brain’s dark energy. Nat Rev. Neurol. 2010, 6, 15–28. [Google Scholar]
- Tang, X.Z.; Tracy, E.R.; Boozer, A.D.; deBrauw, A.; Brown, R. Symbol sequence statistics in noisy chaotic signal reconstruction. Phys. Rev. E. 1995, 51, 3871–3889. [Google Scholar]
- Paternoster, L.; Vallverdu, M.; Melia, U.; Claria, F.; Voss, A.; Caminal, P. Analysis of epileptic EEG signals in children by symbolic dynamics, Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan, 3–7 July 2013; pp. 4362–4365.
- Zhao, Y.; Hong, W. Symbolic dynamics analysis of epileptic EEG signals of the rat. J. Biomed. Eng. 2012, 29, 760–763. [Google Scholar]
- Schindler, K.; Gast, H.; Goodfellow, M.; Rummel, C. On seeing the trees and the forest: Single-signal and multisignal analysis of periictal intracranial EEG. Epilepsia 2012, 53, 1658–1668. [Google Scholar]
- Staniek, M.; Lehnertz, K. Symbolic transfer entropy. Phys. Rev. Lett. 2008, 100. [Google Scholar] [CrossRef]
- Staniek, M.; Lehnertz, K. Symbolic transfer entropy: Inferring directionality in biosignals. Biomedizinische Technik 2009, 54, 323–328. [Google Scholar]
- Dimitriadis, S.I.; Laskaris, N.A.; Tsirka, V.; Erimaki, S.; Vourkas, M.; Micheloyannis, S.; Fotopoulos, S. A novel symbolization scheme for multichannel recordings with emphasis on phase information and its application to differentiate EEG activity from different mental tasks. Cogn. Neurodyn. 2012, 6, 107–113. [Google Scholar]
- Bai-lin, H. Symbolic dynamics and characterization of complexity. Physica D 1991, 51, 161–176. [Google Scholar]
- Kaffashi, F.; Foglyano, R.; Wilson, C.; Loparo, K. The effect of time delay on approximate & sample entropy calculations. Physica D 2008, 237, 3069–3074. [Google Scholar]
- Chen, X.; Solomon, I.; Chon, K. Comparison of the use of approximate entropy and sample entropy: Applications to neural respiratory signal, Proceedings of 27th Annual International Conference of the Engineering in Medicine and Biology Society, Shanghai, China, 17–18 January 2005; pp. 4212–4215.
- Boskovic, A.; Loncar-Turukalo, T.; Sarenac, O.; Japundzic-Zigon, N.; Bajic, D. Unbiased entropy estimates in stress: A parameter study. Comput. Biol. Med. 2012, 42, 667–679. [Google Scholar]
- Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar]
- Pincus, S.M.; Gladstone, I.M.; Ehrenkranz, R.A. A regularity statistic for medical data analysis. J Clin. Monit. 1991, 7, 335–345. [Google Scholar]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar]
- Porta, A.; Guzzetti, S.; Montano, N.; Furlan, R.; Pagani, M.; Malliani, A.; Cerutti, S. Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans. Biomed. Eng. 2001, 48, 1282–1291. [Google Scholar]
- Guzzetti, S.; Borroni, E.; Garbelli, P.E.; Ceriani, E.; Della Bella, P.; Montano, N.; Cogliati, C.; Somers, V.K.; Malliani, A.; Porta, A. Symbolic dynamics of heart rate variability: A probe to investigate cardiac autonomic modulation. Circulation 2005, 112, 465–470. [Google Scholar]
- Cysarz, D.; Lange, S.; Matthiessen, P.F.; Leeuwen, P. Regular heartbeat dynamics are associated with cardiac health. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R368–R372. [Google Scholar]
- Deco, G.; Jirsa, V.K.; McIntosh, A.R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 2011, 12, 43–56. [Google Scholar]
- Steriade, M.; Nunez, A.; Amzica, F. A novel slow (<1 hz) oscillation of neocortical neurons in vivo: Depolarizing and hyperpolarizing components. J. Neurosci. 1993, 13, 3252–3265. [Google Scholar]
- He, B.J.; Raichle, M.E. The fmri signal, slow cortical potential and consciousness. Trends Cogn. Sci. 2009, 13, 302–309. [Google Scholar]
- Monto, S.; Palva, S.; Voipio, J.; Palva, J.M. Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans. J. Neurosci. 2008, 28, 8268–8272. [Google Scholar]
- Lin, P.F.; Lo, M.T.; Tsao, J.; Chang, Y.C.; Lin, C.; Ho, Y.L. Correlations between the signal complexity of cerebral and cardiac electrical activity: A multiscale entropy analysis. PloS One 2014, 9. [Google Scholar] [CrossRef]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the nincds-adrda work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 1984, 34, 939–944. [Google Scholar]
- Roman, G.C.; Tatemichi, T.K.; Erkinjuntti, T.; Cummings, J.L.; Masdeu, J.C.; Garcia, J.H.; Amaducci, L.; Orgogozo, J.M.; Brun, A.; Hofman, A.; et al. Vascular dementia: Diagnostic criteria for research studies. Report of the NINDS-AIREN international workshop. Neurology 1993, 43, 250–260. [Google Scholar]
- Stevenson, N.J.; Korotchikova, I.; Boylan, G.B. An estimate of newborn EEG amplitude with limited frequency content, Proceedings of 10th International Conference on Information Sciences Signal Processing and their Applications, Kuala Lumpur, Malaysia, 10–13 May 2010; pp. 288–291.
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A. 1998, 454, 903–995. [Google Scholar]
- Wessel, N.; Ziehmann, C.; Kurths, J.; Meyerfeldt, U.; Schirdewan, A.; Voss, A. Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates. Phys. Rev. E. 2000, 61, 733–739. [Google Scholar]
- Schreiber, T.; Schmitz, A. Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 1996, 77, 635–638. [Google Scholar]
- Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E. 1994, 49, 1685–1689. [Google Scholar]
- Hurst, H.E. Long term storage capacity of reservoirs. Trans. Am. Soc. Eng. 1951, 116, 770–799. [Google Scholar]
- Amigó, J.M.; Zambrano, S.; Sanjuán, M.A.F. True and false forbidden patterns in deterministic and random dynamics. Europhys. Lett. 2007, 79. [Google Scholar] [CrossRef]
- Carpi, L.C.; Saco, P.M.; Rosso, O.A. Missing ordinal patterns in correlated noises. Physica A 2010, 389, 2020–2029. [Google Scholar]
- Abasolo, D.; Hornero, R.; Espino, P.; Escudero, J.; Gomez, C. Electroencephalogram background activity characterization with approximate entropy and auto mutual information in Alzheimer’s disease patients, Proceedins of 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 6192–6195.
- Park, J.H.; Kim, S.; Kim, C.H.; Cichocki, A.; Kim, K. Multiscale entropy analysis of EEG from patients under different pathological conditions. Fractals 2007, 15, 399–404. [Google Scholar]
- Poupard, L.; Sartène, R.; Wallet, J.-C. Scaling behavior in β-wave amplitude modulation and its relationship to alertness. Biol. Cybern. 2001, 85, 19–26. [Google Scholar]
- Popivanov, D.; Jivkova, S.; Stomonyakov, V.; Nicolova, G. Effect of independent component analysis on multifractality of eeg during visual-motor task. Signal Process 2005, 85, 2112–2123. [Google Scholar]
- Yang, A.C.; Wang, S.J.; Lai, K.L.; Tsai, C.F.; Yang, C.H.; Hwang, J.P.; Lo, M.T.; Huang, N.E.; Peng, C.K.; Fuh, J.L. Cognitive and neuropsychiatric correlates of EEG dynamic complexity in patients with Alzheimer’s disease. Prog. Neuro-psychopharmacol. Biolog. Psychiatry 2013, 47, 52–61. [Google Scholar]
- Escudero, J.; Abasolo, D.; Hornero, R.; Espino, P.; Lopez, M. Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy. Physiol. Meas. 2006, 27, 1091–1106. [Google Scholar]
- Thaler, D.S. Design for an aging brain. Neurobiol. Aging. 2002, 23, 13–15. [Google Scholar]
- Comon, P. Independent component analysis, a new concept? Signal Process 1994, 36, 287–314. [Google Scholar]
- Plochl, M.; Ossandon, J.P.; Konig, P. Combining EEG and eye tracking: Identification, characterization, and correction of eye movement artifacts in electroencephalographic data. Front. Hum. Neurosci. 2012, 6. [Google Scholar] [CrossRef]
- Tsai, P.H.; Lin, C.; Tsao, J.; Lin, P.F.; Wang, P.C.; Huang, N.E.; Lo, M.T. Empirical mode decomposition based detrended sample entropy in electroencephalography for Alzheimer’s disease. J. Neurosci. Methods. 2012, 210, 230–237. [Google Scholar]
- Safieddine, D.; Kachenoura, A.; Albera, L.; Birot, G.; Karfoul, A.; Pasnicu, A.; Biraben, A.; Wendling, F.; Senhadji, L.; Merlet, I. Removal of muscle artifact from EEG data: Comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches. EURASIP J. Adv. Signal Process 2012, 2012. [Google Scholar] [CrossRef]
- Babiloni, C.; Frisoni, G.B.; Vecchio, F.; Pievani, M.; Geroldi, C.; De Carli, C.; Ferri, R.; Vernieri, F.; Lizio, R.; Rossini, P.M. Global functional coupling of resting EEG rhythms is related to white-matter lesions along the cholinergic tracts in subjects with amnesic mild cognitive impairment. J. Alzheimers Dis 2010, 19, 859–871. [Google Scholar]
- Adler, G.; Brassen, S.; Jajcevic, A. EEG coherence in Alzheimer’s dementia. J. Neural. Transm. 2003, 110, 1051–1058. [Google Scholar]
- Garn, H.; Waser, M.; Deistler, M.; Benke, T.; Dal-Bianco, P.; Ransmayr, G.; Schmidt, H.; Sanin, G.; Santer, P.; Caravias, G.; et al. Quantitative EEG markers relate to Alzheimer’s disease severity in the prospective dementia registry austria (PRODEM). Clin. Neurophysiol. 2014. [Google Scholar] [CrossRef]
- Laskaris, N.A.; Tarnanas, I.; Tsolaki, M.N.; Vlaikidis, N.; Karlovasitou, A.K. Improved detection of amnestic MCI by means of discriminative vector quantization of single-trial cognitive ERP responses. J. Neurosci. Methods. 2013, 212, 344–354. [Google Scholar]
- Koenig, T.; Prichep, L.; Dierks, T.; Hubl, D.; Wahlund, L.O.; John, E.R.; Jelic, V. Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging. 2005, 26, 165–171. [Google Scholar] [Green Version]
- Van Straaten, E.C.; den Haan, J.; de Waal, H.; van der Flier, W.M.; Barkhof, F.; Prins, N.D.; Stam, C.J. Disturbed phase relations in white matter hyperintensity based vascular dementia: An EEG directed connectivity study. Clin. Neurophysiol. 2014. [Google Scholar] [CrossRef]
- Jalili, M.; Barzegharan, E.; Knyazeva, M. Synchronization of EEG: Bivariate and multivariate measures. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 22, 212–221. [Google Scholar]
- Abasolo, D.; Hornero, R.; Espino, P.; Alvarez, D.; Poza, J. Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiol. Meas. 2006, 27, 241–253. [Google Scholar]
- Yentes, J.M.; Hunt, N.; Schmid, K.K.; Kaipust, J.P.; McGrath, D.; Stergiou, N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 2013, 41, 349–365. [Google Scholar]
- Sokunbi, M.O. Sample entropy reveals high discriminative power between young and elderly adults in short fmri data sets. Front. Neuroinform. 2014, 8. [Google Scholar] [CrossRef]
- Sinnreich, R.; Kark, J.; Friedlander, Y.; Sapoznikov, D.; Luria, M. Five minute recordings of heart rate variability for population studies: Repeatability and age-sex characteristics. Heart 1998, 80, 156–162. [Google Scholar]
- Yamamoto, S.; Imai, R.; Uchiike, T.; Mizuno, R.; Okamoto, Y. An attempt to classify patients with dementia by detrended fluctuation analysis of electroencephalographic data—a preliminary study. Rinsho Byori 2013, 61, 15–18, In Japanese. [Google Scholar]
- Fingelkurts, A.A.; Short-term, EEG. spectral pattern as a single event in eeg phenomenology. Open Neuroimag. J. 2010, 4, 130–156. [Google Scholar]
- Koch, M.A.; Norris, D.G.; Hund-Georgiadis, M. An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage 2002, 16, 241–250. [Google Scholar]
- Honey, C.J.; Sporns, O.; Cammoun, L.; Gigandet, X.; Thiran, J.P.; Meuli, R.; Hagmann, P. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA. 2009, 106, 2035–2040. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, P.-F.; Tsao, J.; Lo, M.-T.; Lin, C.; Chang, Y.-C. Symbolic Entropy of the Amplitude rather than the Instantaneous Frequency of EEG Varies in Dementia. Entropy 2015, 17, 560-579. https://doi.org/10.3390/e17020560
Lin P-F, Tsao J, Lo M-T, Lin C, Chang Y-C. Symbolic Entropy of the Amplitude rather than the Instantaneous Frequency of EEG Varies in Dementia. Entropy. 2015; 17(2):560-579. https://doi.org/10.3390/e17020560
Chicago/Turabian StyleLin, Pei-Feng, Jenho Tsao, Men-Tzung Lo, Chen Lin, and Yi-Chung Chang. 2015. "Symbolic Entropy of the Amplitude rather than the Instantaneous Frequency of EEG Varies in Dementia" Entropy 17, no. 2: 560-579. https://doi.org/10.3390/e17020560
APA StyleLin, P.-F., Tsao, J., Lo, M.-T., Lin, C., & Chang, Y.-C. (2015). Symbolic Entropy of the Amplitude rather than the Instantaneous Frequency of EEG Varies in Dementia. Entropy, 17(2), 560-579. https://doi.org/10.3390/e17020560