Next Article in Journal
Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data
Previous Article in Journal
Combination Synchronization of Three Identical or Different Nonlinear Complex Hyperchaotic Systems
Open AccessArticle

Improved Time Complexities for Learning Boolean Networks

Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
Authors to whom correspondence should be addressed.
Entropy 2013, 15(9), 3762-3795;
Received: 27 May 2013 / Revised: 2 September 2013 / Accepted: 3 September 2013 / Published: 11 September 2013
Existing algorithms for learning Boolean networks (BNs) have time complexities of at least O(N · n0:7(k+1)), where n is the number of variables, N is the number of samples and k is the number of inputs in Boolean functions. Some recent studies propose more efficient methods with O(N · n2) time complexities. However, these methods can only be used to learn monotonic BNs, and their performances are not satisfactory when the sample size is small. In this paper, we mathematically prove that OR/AND BNs, where the variables are related with logical OR/AND operations, can be found with the time complexity of O(k·(N+ logn)·n2), if there are enough noiseless training samples randomly generated from a uniform distribution. We also demonstrate that our method can successfully learn most BNs, whose variables are not related with exclusive OR and Boolean equality operations, with the same order of time complexity for learning OR/AND BNs, indicating our method has good efficiency for learning general BNs other than monotonic BNs. When the datasets are noisy, our method can still successfully identify most BNs with the same efficiency. When compared with two existing methods with the same settings, our method achieves a better comprehensive performance than both of them, especially for small training sample sizes. More importantly, our method can be used to learn all BNs. However, of the two methods that are compared, one can only be used to learn monotonic BNs, and the other one has a much worse time complexity than our method. In conclusion, our results demonstrate that Boolean networks can be learned with improved time complexities. View Full-Text
Keywords: Boolean networks; gene regulatory networks; mutual information; entropy; time complexity Boolean networks; gene regulatory networks; mutual information; entropy; time complexity
Show Figures

Figure 1

MDPI and ACS Style

Zheng, Y.; Kwoh, C.K. Improved Time Complexities for Learning Boolean Networks. Entropy 2013, 15, 3762-3795.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

Only visits after 24 November 2015 are recorded.
Back to TopTop