1. Introduction
Quantum mechanics was originally developed for the world of atoms and electrons, where it has been very successful. The understanding of the microscopic world, let us call it “quantum world”, that has developed from this success, seems to be very different or even incompatible with the understanding of the everyday world of our immediate experience, which we can call “classical world”. This is unsatisfactory because one of the strongest feelings of a modern physicist is the belief in the unity of knowledge. It is even paradoxical because the bodies of the everyday world are composed of atoms and electrons, which ought to be described by quantum mechanics.
We can distinguish three problems that are met on the way from quantum to classical physics. Classical theories such as Newtonian mechanics, Maxwellian electrodynamics or thermodynamics are objective, in the sense that the systems they are studying can be considered as real objects, and the values of their observables, such as position, momentum, field strengths, charge current, temperature, etc., can be ascribed to the systems independently of whether they are observed or not. If we are going to construct quantum models of classical systems, the question naturally arises how such an objective world can emerge from quantum mechanics.
Indeed, in quantum mechanics, the values obtained by most registrations on microsystems (technically, they are values of observables) cannot be assumed to exist before the registrations, that is, to be objective properties of the microsystem on which the registration is made. An assumption of this kind would lead to contradictions with other assumptions of standard quantum mechanics and, ultimately, with observable facts (contextuality [
1,
2], Bell inequalities [
3], Hardy impossibilities [
4], Greenberger–Horne–Zeilinger equality [
5]).
This property of quantum mechanical observables has lead to growing popularity of various forms of weakened realism. For example, according to Bohr, realism applies only to the results of quantum measurements, which can be described by the relation between objective classical properties of real classical preparation and registration apparatuses. Various concepts of quantum mechanics itself, such as electron, wave function, observable, etc., do not possess any direct counterparts in reality; they are just instruments to keep order in our experience and to make it ready for application. A rigorous account of this kind of weakened realism is [
6]. Similar view is the so-called “statistical” or “ensemble” interpretation [
7]. This refuses to attribute any kind of reality to the quantum-mechanical probability amplitudes either at the microscopic or macroscopic level. According to this view, the amplitudes are simply intermediate symbols in a calculus whose only ultimate function is to predict the statistical probability of various directly observed macroscopic outcomes, and no further significance should be attributed to them. Another example of even weaker realism is the “constructive empiricism” by van Fraassen [
8], which proposes to take only empirical adequacy, but not necessarily “truth”, as the goal of science. Even the reality of classical systems and their properties is then only apparent. The focus is on describing “appearances” rather than how the world really is [
9]. Thus, quantum mechanics does not seem to allow a realist interpretation. Let us call this
Problem of Realist Interpretation.
The second problem for construction of quantum models of classical systems can be called
Problem of Classical Properties. This is the apparent absence of quantum superpositions, as well as the robustness, of classical properties (for detailed discussion, see Ref. [
10]). Clearly, classical properties such as a position do not allow linear superposition. Nobody has ever seen a table to be in a linear superposition of being simultaneously in the kitchen as well as in the bedroom. Also, observing the table in the kitchen does not shift it to the bedroom, while quantum registration changes properties of registered systems. That is roughly what is meant when one says that classical properties are
robust (for a better definition, see Ref. [
10]).
Finally, there is a serious problem at the quantum–classical boundary. For quantum measurements, evidence suggests the assumption that the registration apparatus always is in a well-defined classical state at the end of any quantum measurement indicating just one value of the registered observable. This is called
objectification requirement [
11]. However, if the initial state of the registered system is a linear superposition of different eigenvectors of the observable, then the linearity of Schrödinger equation implies that the end state of the apparatus is also a linear superposition of eigenstates of its pointer observable. (This holds, strictly speaking, only if the measured system
and the apparatus
constitute together an isolated system. But if they are not isolated from their environment
then the composite
can be considered as isolated and the difficulty reappears.) Thus, it turns out that realism in most cases leads to contradictions with the postulate of linear quantum evolution, see the analysis in [
10]. Let us call this
Problem of Quantum Measurement.
There is a vast literature dealing with the three problems containing many different proposals from various variants of weakened realism to radical changes of quantum mechanics (for clear reviews see [
11,
12,
13]). One also proposes that quantum mechanics is based on a kind of approximation that ceases to be valid for macroscopic systems, see e.g. [
10]. An even more radical approach is to look for the way quantum mechanics could be obtained from a kind of deeper theory with classical character (see e.g. the proceedings [
14]) These or other attempts in the literature do not seem to lead to a satisfactory solution. We shall not discuss this work because we shall look for the solution in a different and utterly novel direction. Our approach starts directly from quantum mechanics as it has been formulated by Bohr, Born, Dirac, Heisenberg, von Neumann, Pauli and Schrödinger. Our analysis has shown that they have delivered enough tools to deal with the problems. The aim of this review is to prove that our proposals of solutions to the three problems form a logically coherent whole with the rest of quantum mechanics.
Let us briefly describe the ideas from which our approach starts. First, it is true that values of observables are not objective. However, in [
15], we have shown that there are other observable properties of quantum systems that can be ascribed to the systems without contradictions and there is a sufficient number of them to describe the state of the systems completely. We shall introduce and discuss this approach in
Section 1.0.3. in general terms and then, in technical detail, in
Section 2.1.2..
Second, many attempts to derive classical theories from quantum mechanics are based on quantum states of minimal uncertainty (Gaussian wave packets, coherent states, etc.). But a sharp classical trajectory might be just a figment of imagination because each measurement of a classical trajectory is much fuzzier than the minimum quantum uncertainty. Thus, the experimental results of classical physics do not justify any requirement that we have to approximate absolutely sharp trajectories as accurately as possible. This was observed as early as 1822 by Exner [
16] and evolved further in 1955 by Born [
17]. Taking this as a starting point, one must ask next what the quantum states that correspond to realistically fuzzy classical ones are. In [
18], a new assumption about such quantum states has been formulated and studied. We shall discuss it in
Section 4.
Third, in [
19] it is shown that the measurement of observables such as a position, momentum, spin, angular momentum, energy, etc. on a quantum system must be strongly disturbed by all existing systems of the same type, at least according to the standard quantum mechanics. To eliminate the disturbance, and to give an account of what is in fact done during a quantum measurement process, the standard theory of observables must be rewritten. We shall do this in
Section 3.2 on identical quantum systems.
Fourth, the current theory of quantum measurement describes a registration apparatus by a microscopic quantum system, the so-called pointer, and assumes that a reading of the apparatus is an eigenvalue of a pointer observable. For example, Ref. [
20], p. 64, describes a measurement of energy eigenvalues with the help of scattering process similar to Stern–Gerlach experiment, and it explicitly states:
We can consider the centre of mass [of a microscopic system] as a ’special’ measuring apparatus...
Similarly, Ref. [
21], p. 17 describes Stern–Gerlach experiment:
The microscopic object under investigation is the magnetic moment μ of an atom.. . . The macroscopic degree of freedom to which it is coupled in this model is the centre of mass position .. . . I call this degree of freedom macroscopic because different final values of can be directly distinguished by macroscopic means, such as the detector.. . . From here on, the situation is simple and unambiguous, because we have entered the macroscopic world: The type of detectors and the detail of their functioning are deemed irrelevant.
Paradoxically, this notion of measurement apparatus (mostly called “meter”) is quite useful for the very precise modern quantum experiments, such as non-demolition measurements or weak measurements, see, e.g., Refs. [
22,
23]. Quite generally, these experiments utilize auxiliary microscopic systems called
ancillas. If the pointer is interpreted as an ancilla, then the old theory works well at least for the interaction of the measured system with the ancilla. However, the fact that ancillas themselves must be registered by macroscopic detectors is “deemed irrelevant”. A more detailed analysis is given in
Section 5.1.
In fact, detectors are very special macroscopic systems. We shall show that their role is to justify the state reduction (collapse of wave function) and to define the so-called “preferred basis” (see [
13]) that determines the form of state reduction. Further, the reduction can be assumed as a process within detectors at the time of the detector’s macroscopic signal. We shall discuss the design and role of detectors in
Section 4.3.
The present paper has grown from review [
24] by adding new results, by correcting many minor errors and by explaining many points in a clearer and more coherent way. It is a systematic exposition of the non-relativistic quantum mechanics (the space and time structure is everywhere assumed to be Newtonian).
1.0.1. Examples of quantum systems
To explain what quantum mechanics is about, this section describes some well-known quantum systems following Ref. [
24]. It also introduces some general notions, such as microsystem, macrosystem, type of system and structural property following Ref. [
15].
Quantum mechanics is a theory that describes certain class of properties of certain class of objects in a similar way as any other physical theory does. For example, among others, Newtonian mechanics describes bodies that can be considered as point-like in a good approximation and studies the motion of the bodies.
Quantum systems that we shall consider are photons, electrons, neutrons and nuclei, which we call particles, and systems containing some number of particles, such as atoms, molecules and macroscopic systems, which are called composite. (One can ask whether there is a non-relativistic limit of photons. In one such limit, photons may move with infinite velocity and therefore their position does not need to be very well defined. In another, photons may be represented by a classical electromagnetic wave.) Of course, neutrons and nuclei themselves are composed of quarks and gluons, but non-relativistic quantum mechanics can and does start from some phenomenological description of neutrons and nuclei.
Let us call particles and quantum systems that are composed of small number of particles microsystems. They are extremely tiny and they mostly cannot be perceived directly by our senses. We can observe directly only macroscopic quantum systems that are composed of very many particles. (It is true that the eye can recognize signals of just several photons, but it can be viewed as a quantum registration apparatus with macroscopic parts and only these are observed “directly”.) “Very many” is not too different from (the Avogadro number). Let us call these macrosystems. Some properties of most macroscopic systems obey classical theories. For example, shape and position of my chair belong to Euclidean geometry, its mass distribution to Newtonian mechanics, chemical composition of its parts to classical chemistry and thermodynamic properties of the parts such as phase or temperature to phenomenological thermodynamics. Such properties are called ’classical’. Thus, properties of microsystems can only be observed via classical properties of macrosystems; if microsystems interact with them, then this interaction changes their classical properties.
Microsystems are divided into types, such as electrons, hydrogen atoms, etc. Systems of one type are not distinguishable from each other in a sense not existing in classical physics. Systems of the same type are often called identical. Microsystems exist always in a huge number of identical copies. The two properties of microsystems, viz. 1) their inaccessibility to direct observations and 2) utter lack of individuality that is connected with the existence of a huge number of identical copies, make them rather different from classical systems or “things”. Each classical system can be observed directly by humans (in principle: for example, the distant galaxies) and each can be labelled and distinguished from other classical systems, because it is a quantum system composed of a huge number of particles and hence it is highly improbable that it has a kin of the same type in the world.
Objective properties that are common to all microsystems of the same type will be called structural. Thus, each particle has a mass, spin and electric charge. For example, the mass of electron is about 0.5 MeV, the spin 1/2 and the charge about C. In non-relativistic quantum mechanics, any composite system consists of definite numbers of different particles with their masses, spins and charges. (We do not view quasiparticles as particles but as auxiliary entities useful for description of the spectrum of some composite systems.) E.g., a hydrogen atom contains one electron and one proton (nucleus). The composition of a system is another structural property. The structural properties influence the dynamics of quantum systems; the way they do it and what dynamics is will be explained later. Only then, it will be clear what the meaning of these parameters is and that the type of each system can be recognized, if its dynamics is observed. When we shall know more about dynamics, further structural properties will emerge.
Structural properties are objective in the sense that they can be assumed to exist before and independently of any measurement. Such assumption does not lead to any contradictions with standard quantum mechanics and is at least tacitly made by most physicists. In fact, the ultimate goal of practically all experiments is to find structural properties of quantum systems.
From the formally logical point of view, all possible objective properties of given kind of objects ought to form a Boolean lattice. The structural properties satisfy this condition: systems with a given structural property form a subset of all systems. These subsets are always composed of whole type-classes of quantum systems. Clearly, the intersection of two such subsets and the complement of any such subset is again a structural property.
Structural properties characterize a system type completely but they are not sufficient to determine the dynamics of individual systems.
1.0.2. Examples of quantum experiments
The topic of this section plays an important role in understanding quantum mechanics. Specific examples of typical experiments will be given in some detail following Ref. [
24]. In this way, we gain access to the notions of preparation and registration, which are assumed by the basic ideas of our realist interpretation of quantum mechanics. Describing the experiments, we shall already use some of the language of the interpretation, which will be introduced and motivated in this way.
Let us first consider experiments with microsystems that are carried out in laboratories. Such an experiment starts at a source of microsystems that are to be studied. Let us give examples of such sources.
Electrons. One possible source (called field emission, see e.g. Ref. [
25], p. 38) consists of a cold cathode in the form of a sharp tip and a flat anode with an aperture in the middle at some distance from the cathode, in a vacuum tube. The electrostatic field of, say, few kV will enable electrons to tunnel from the metal and form an electron beam of about
electrons per second through the aperture, with a relatively well-defined average energy.
Neutrons can be obtained through nuclear reaction. This can be initiated by charged particles or gamma rays that can be furnished by an accelerator or a radioactive substance. For example the so-called Ra-Be source consists of finely divided RaCl mixed with powdered Be, contained in a small capsule. Decaying Ra provides alpha particles that react with Be. The yield for 1 mg Ra is about neutrons per second with broad energy spectrum from small energies to about 13 MeV. The emission of neutrons is roughly spherically symmetric centred at the capsule.
Atoms and molecules. A macroscopic specimen of the required substance in gaseous phase at certain temperature can be produced, e.g., by an oven. The gas is in a vessel with an aperture from which a beam of the atoms or molecules emerges.
Each source is defined by an arrangement of macroscopic bodies of different shapes, chemical compositions, temperatures and by electric or magnetic fields that are determined by their macroscopic characteristics, such as average field intensities: that is, by their classical properties. These properties determine uniquely what type of microsystem is produced. Let us call this description
empirical. It is important that the classical properties defining a source do not include time and position so that the source can be reproduced later and elsewhere. We call different sources that are defined by the same classical properties
equivalent. Empirical description is sufficient for reproducibility of experiments but it is not sufficient for understanding of how the sources work. If a source defined by an empirical description is set into action, we have an instance of the so-called
preparation.
Quantum mechanics assumes that these are general features of all sources, independently of whether they are arranged in a laboratory by humans or occur spontaneously in nature. For example, classical conditions at the centre of the Sun (temperature, pressure and plasma composition) lead to emission of neutrinos that reach the space outside the Sun.
Often, a source yields very many microsystems that are emitted in all possible directions, a kind of radiation. We stress that the detailed structure of the radiation as it is understood in classical physics, that is where each individual classical system exactly is at different times, is not determined for quantum systems and the question even makes no sense. Still, a fixed source gives the microsystems that originate from it some properties. In quantum mechanics, these properties are described on the one hand by the structural properties that define the prepared type, on the other, e.g., by the so-called
quantum state. The mathematical entity that is used in quantum mechanics to describe a state (the so-called state operator) will be explained in
Section 2.1. To determine the quantum state that results from a preparation with a given empirical description in each specific case requires the full formalism of quantum mechanics. Hence, we postpone this point to
Section 5.
After arranging the source, another stage of the experiment can start. Generally, only a very small part of the radiation from a source has the properties that are needed for the planned experiment. The next step is, therefore, to select the part and to block off the rest. This is done by the so-called collimator, mostly a set of macroscopic screens with apertures and macroscopic electric or magnetic fields. For example, the electron radiation can go through an electrostatic field that accelerates the electrons and through electron-microscope “lenses”, each followed by a suitable screen. A narrow part of the original radiation, a beam, remains. Another example is a beam of molecules obtained from an oven. It can also contain parts of broken molecules including molecules with different degrees of ionisation. The part with suitable composition can then be selected by a mass spectrometer and the rest blocked off by a screen. Again, the beam resulting from a raw source and a collimator consists of individual quantum objects with a well-defined type and quantum state. The process of obtaining these individual quantum objects can be viewed as a second stage of the preparation. Again, there is an empirical description that defines an equivalence class of preparations and equivalent preparations can be reproduced.
The final beam can be characterized not only by the quantum state of individual objects but also by its approximate current, that is how many individual objects it yields per second. The beam can be made very thin. For example, in the electron-diffraction experiment [
26], the beam that emerges from the collimator represents an electric current of about
, or
electrons per second. As the approximate velocity of the electrons and the distance between the collimator and the detector are known, one can estimate the average number of electrons that are there simultaneously at each time. In the experiment, it is less than one. One can understand in this way that it is an experiment with individual electrons.
Next, the beam can be lead through further arrangement of macroscopic bodies and fields. For example, to study the phenomenon of diffraction of electrons, each electron can be scattered by a thin slab of crystalline nickel or by an electrostatic biprism interference apparatus. The latter consists of two parallel plates and a wire in between with a potential difference between the wire on the one hand and the plates on the other. An electron object runs through between the wire and both the left and right plate simultaneously and interferes with itself afterwards (for details see [
26]). Again, the beam from the graphite or the biprism can be viewed as prepared by the whole arrangement of the source, collimator and the interference apparatus. This is another example of a reproducible preparation procedure.
Finally, what results from the original beam must be made directly perceptible by its interaction with another system of macroscopic bodies and fields. This process is called registration and the system registration apparatus. The division of an experimental arrangement into preparation and registration parts is not unique. For example, in the electron diffraction experiment, one example of a registration apparatus begins after the biprism interference, another one includes also the biprism interference apparatus. Similarly to preparations, the registrations are defined by an empirical description of their relevant classical properties in such a way that equivalent registrations can be reproduced.
An important, even definition, property of a registration is that it is applicable to an individual quantum system and that each empirical result of a registration is caused by just one individual system. In the above experiment, this assumption is made plausible by the extreme thinning of the beam, but it is adopted in general even if the beam is not thin.
An empirical description of a registration apparatus can determine a quantum mechanical
observable similarly as preparation determines a quantum state. Again, more theory is needed for understanding of what are the mathematical entities (the so-called
positive valued operator measures, see
Section 2.2) describing observables and how they are related to registration devices. Each individual registration performed by the apparatus, i.e., registration performed on a single quantum object, then gives some value of the observable. The registration is not considered to be finished without the registration apparatus having given a definite, macroscopic and classical signal. This is the objectification requirement.
A part of registration apparatuses for microsystems are
detectors. At the empirical level, a detector is determined by an arrangement of macroscopic fields and bodies, as well as by the chemical composition of its sensitive matter [
27]. For example, in the experiment [
26] on electron diffraction, the electrons coming from the biprism interference apparatus are absorbed in a scintillation film placed transversally to the beam. An incoming electron is thus transformed into a light signal. The photons are guided by parallel system of fibres to a photo-cathode. The resulting (secondary) electrons are accelerated and lead to a micro-channel plate, which is a system of parallel thin photo-multipliers. Finally, a system of tiny anodes enables to record the time and the transversal position of the small flash of light in the scintillation film.
In this way, each individual electron coming from the biprism is detected at a position (two transversal coordinates determined by the anodes and one longitudinal coordinate determined by the position of the scintillation film). Such triple
of numbers is the result of each registration and the value of the corresponding observable, which is a coarsened and localized position operator
in this case (see
Section 3.2.3.). Also the time of the arrival at each anode can be approximately determined. Thus, each position obtains a certain time.
For our theory, the crucial observation is the following. When an electron that has been prepared by the source and the collimator hits the scintillation film, it is lost as an individual system. Indeed, there is no property that would distinguish it from other electrons in the scintillation matter. Thus, this particular registration is a process inverse to preparation: while the preparation has created a quantum system with certain individuality, the registration entails a loss of the individuality. Our theory of quantum registration in
Section 5 will make precise and generalize this observation.
If we repeat the experiment with individual electrons many times and record the transversal position coordinates, the gradual formation of the electron interference pattern can be observed. The pattern can also be described by some numerical values. For example, the distance of adjacent maxima and the direction of the interference fringes can be such values. Still, the interference pattern is not a result of one but of a whole large set of individual registrations.
In some sense, each electron must be spread out over the whole plane of the scintillation detector after coming from the biprism but the excitation of the molecules in the detector matter happens always only within a tiny well-localized piece of it, which is different for different electrons. (This is what is sometimes called “the collapse of wave function”.) Thus, one can say that the interference pattern must be encoded in each individual electron, even if it is not possible to obtain the property by a single registration. The interference pattern can be considered as an objective property of the individual electrons prepared by the source, the collimator and the biprism interference apparatus. The interference pattern is not a structural property: preparations that differ in the voltage at some stage of the experiment (e.g., the accelerating field in the collimator or the field between the wire and the side electrodes in the biprism interference apparatus, etc.) will give different interference patterns. We call such objective properties dynamical. On the other hand, the hitting position of each individual electron cannot be considered as its objective property. Such an assumption would lead to contradictions with results of other experiments. The position must be regarded as created in the detection process.
It is a double-slit experiment, a special kind of which is described above, that provides a strong motivation for considering an individual quantum particle as an extended object of sorts. Without any mathematical description, it is already clear that such an extended character of electrons could offer an explanation for the stability of some states of electrons orbiting atomic nuclei. Indeed, a point-like electron would necessarily have a time-dependent dipole momentum and lose energy by radiation. However, an extended electron can define a stationary charge current around the nucleus.
Some structural properties can be measured directly by a registration (on individual quantum systems) and their values are real numbers. For example, mass can be measured by a mass spectrometer. Such structural properties can be described by quantum observables (see
Section 2.2.5.). (These observables must commute with all other observables ([
6], IV.8), and can be associated with the so-called superselection rules, see e.g. [
11].) However, there are also structural properties that cannot be directly measured on individual objects similarly to the interference pattern, such as cross sections or branching ratios. They cannot be described by observables.
1.0.3. Realist Model Approach to quantum mechanics
In the previous section, describing specific experiments, we have used certain words that are avoided in careful textbooks of quantum mechanics such as
objective properties or
quantum object or
…An electron object runs through between the wire and both the left and right plate simultaneously and interferes with itself afterwards …
The electron is viewed here as a real object that is extended over the whole width of the biprism apparatus. After this intuitive introduction, we give now a general and systematic account of our realist interpretation.
A realist interpretation of a physical theory is a more subtle question than whether the world exists for itself rather than being just a construction of our mind. This question can always be answered in positive without any danger of falsification. However, every physical theory introduces some general, abstract concepts. For example, Newtonian mechanics works with mass points, their coordinates, momenta and their dynamical trajectories. The truly difficult question is whether such concepts possess any counterparts in the real world. On the one hand, it seems very plausible today that mass points and their sharp trajectories cannot exist and are at most some idealizations. On the other hand, if we are going to understand a real system, such as a snooker ball moving on a table, then we can work with a construction that uses these concepts but is more closely related to the reality. For example, we choose a system of infinitely many mass points forming an elastic body of a spherical shape and calculate the motion of this composite system using Newton’s laws valid for its constituent points. Then, some calculated properties of such a model can be compared with interesting observable properties of the real system. Thus, even if the general concepts of the theory do not describe directly anything existing, a suitable model constructed with the help of the general concepts can account for some aspects of a real system.
Motivated by this observation, we shall divide any physical theory into two parts. First, there is a treasure of successful models. Each model gives an approximative representation of some aspects of a
real object [
28]. Historically, models form a primary and open part of the theory. For example, in Newtonian mechanics, the solar system was carefully observed by Tycho de Brahe and then its model was constructed by Kepler. Apparently, Newton was able to calculate accelerations and doing so for Kepler trajectories, he might discover that they pointed towards the Sun. Perhaps this lead to the Second Law. The hydrogen atom had a similar role in quantum mechanics.
Second, there is a general language part. It contains the mathematical structure of state space, conditions on trajectories in the state space, their symmetries and the form of observables [
8]. It is obtained by generalization from the study of models and is an instrument of further model construction and of model unification. For example, in Newtonian mechanics, the state space is a phase space, the conditions on trajectories is the general structure of Newton’s dynamical equations, symmetries are Galilean transformations and observables are real functions on the phase space.
A model is constructed as a particular subset of trajectories in a particular state space as well as a choice of important observables. For example, to describe the solar system, assumptions such as the number of bodies, their point-like form, their masses, the form of gravitational force and certain class of their trajectories can be made if we want to construct a model. The observed positions of the planets would then match the theoretical trajectories of the model within certain accuracy. Thus, a model consists of a language component on the one hand, and an identifiable-object component on the other. The language component always contains simplifying assumptions, always holds only for some aspects of the associated object and only within some approximation. The approximation that is referred to is bounded from above by the accuracy of performed measurements. This is measurable and can be expressed numerically by statistical variances.
Clearly, the models of a given theory are not predetermined by the general part but obtained in the historical evolution and dependent on observation of real objects. On the one hand, the general part can also be used to construct language components of models that do not have any real counterparts. On the other hand, the model part is steadily evolving and never closed. For example, a satisfactory quantum model of high temperature superconductivity is not yet known. This is why the treasure of successful models is an independent and, in fact, the basic part of any theory.
Such philosophy forms a first step of what we call our Realist Model Approach to quantum mechanics. Thus, the Approach lies somewhat within the recent trend of the philosophy of science that defines a theory as a class of models (see, e.g., [
8,
28,
29,
30,
31]). It can be said that it combines ideas of the constructive realism by Ronald Giere (I enthusiastically adopt Giere’s view that philosophy of science is to be removed from the realm of philosophy and put into the realm of cognitive sciences) with van Fraassen notions of state space and symmetries [
8] as a basis of the general language part. (Van Fraassen also applied his constructive empiricism to quantum mechanics [
32] and, adding some further ideas, arrived at his own, the so-called “modal interpretation” of it. To prevent misunderstanding, it must be stressed that the account and interpretation of quantum mechanics described here is different from van Fraassen’s.) It is important that constructive realism is immune to the usual objections against naive realism. In addition, we add some further importance to the general part by recognizing its unification role. The effort at unification is without any doubts a salient feature of scientists that can be observed at any stage of research. For example, Newton was admired for his unification of such different phenomena as apples falling from trees and the Moon moving in the sky. Today’s endeavor to unify the theories of quantum fields and gravity is a very well observable historical fact. From the point of view of Giere, this bent might, perhaps, be understood as one of cognitive instincts.
The focus on models allows to define the task of quantum-explaining the classical world in the following way. Instead of trying to find a direct relation between the general language parts of, say, quantum and Newtonian mechanics or a universal correspondence between states of Newtonian and quantum mechanics such as Wigner–Weyl–Moyal map [
33], p. 85, one ought to build quantum models of real macroscopic systems and their aspects for which there are models in Newtonian mechanics striving for approximate agreement between the two kinds of models on those aspects for which the Newtonian models are successful. For example, we shall not attempt to obtain from quantum mechanics the sharp trajectories that is a concept of general language part of Newtonian mechanics, but rather try to model the observed fuzzy trajectories of specific classical systems (
Section 4), or to analyse different specific registration apparatuses first and then try to formulate some features common to all (
Section 5).
However, the Realist Model Approach is not so easily applied to quantum mechanics as it is to Newtonian mechanics. A question looms large at the very start: What is a real quantum object? Of course, such object are met “empirically” in preparations and registrations. However, we would like to subscribe to the notion that the language component of a model must ascribe to its real object a sufficient number of objective properties. Objective means that the properties can be ascribed to the object alone. Sufficient means that the dynamics of any object as given by its model is uniquely determined by initial data defined by values of a minimal set of its objective properties. For example, in Newtonian mechanics, the values of coordinates and momenta determine a unique solution of Newton’s dynamical equations.
In Newtonian mechanics, coordinates and momenta are observables, and values of observables can be viewed as objective without any danger of contradictions. Using this analogy, one asks: Can values of observables be viewed as objective properties of quantum systems? As is well known, the answer is negative (see
Section 2.2.4.). If we assume that values of observables are the only properties of quantum systems that are relevant to their reality, then there are no real quantum systems. For rigorous no-go theorems concerning such objective properties see, e.g., Ref. [
6].
Our approach to properties of quantum systems is therefore different from those that can be found in literature. First, we extend the notion of properties to include complex ones in the following sense [
24]:
Their values may be arbitrary mathematical entities (sets, maps between sets, etc.). For example, the Hamiltonian of a closed quantum system involves a relation between energy and some other observables of the system. This relation is an example of such a complex property.
Their values do not need to be directly obtained by individual registrations. For example, to measure a cross-section a whole series of scattering experiments must be done. Thus, their values do not necessarily possess probability distribution but may be equivalent to, or derivable from, probability distributions.
Point 2 is usually not clearly understood and we must make it more precise. A real system of Newton mechanics is sufficiently robust so that we can do many experiments with it and perform many measurements on it without changing it. Moreover, any such system is sufficiently different from other systems anywhere in the world (even two cars from one factory series can be distinguished from each other). Any physical experiment on a given classical system can then be repeated many times and only then the results can be considered reliable. The results are then formulated in statistical terms (e.g., as averages, variances, etc.). One can, therefore, feel that it might be more precise account of what one does generally in physics if one spoke of ensembles of equivalent experiments done on equivalent object systems in terms of equivalent experimental set-ups and of the statistics of these ensembles.
This is of course a well-known idea. We shall apply it consequently to Newtonian mechanics in the theory of classical limit in
Section 4. However, one ought not to forget that each ensemble must consist of some elements. Indeed, to get a statistics, one has to possess a sufficiently large number of different individual results. Hence, these individual elements must always be there independently of how large the ensemble is. Then, we can ask the question: What do the statistical properties of an ensemble tell us about properties of the individual object systems used in each individual experiment? In the classical physics, at least, the answer to this question is considered quite obvious and one interprets the experimental results as properties of the individual objects.
Quantum microsystems are never robust in the above sense. After a single registration, the microsystem is usually lost. Then we can repeat the experiment only if we do it with another system. Here, we can utilize another property of quantum microsystems that is different from classical ones: there is always a huge number of microscopic systems of the same type, which are principally indistinguishable from each other. Thus, we can apply the same preparation together with the same registration many times. In quantum mechanics, the thought set of all such experiments is called ensemble of experiments, and similarly ensembles of prepared systems and of obtained results. The elements of the ensembles are again called individuals. Suppose that each individual result of an ensemble of measurements is a real number. Then we can e.g. calculate an average of the results ensemble. The average can then surely be considered as a property of the ensemble.
However, as in classical physics, one can also understand the average as a property of each individual system of the ensemble. In any case, the fact that a given individual belongs to a given ensemble is a property of the individual. It is a crucial step in our theory of properties that we consider a property of an ensemble as a property of each individual element of the ensemble. In fact, this is the only way of how the logical union or intersection of two properties can be understood. For example, the logical union, , of properties A and B of system is the property, that has either property A or B.
In our theory, we shall use both notions, individual object and ensemble. The notion of system ensemble is defined as usual (see, e.g., [
21], p. 25): it is the thought set of all systems obtained through equivalent preparations.
Returning to objectivity of observables in quantum mechanics, the problem is that a registration of an eigenvalue
a of an observable
of a quantum system
by an apparatus
disturbs the microsystem and that the result of the registration is only created during the registration process. The result of the individual registration cannot thus be assumed to be an objective property of
before the registration. It can however be assumed, as we shall do, that it is an objective property of the composite
after the registration. This is the objectification requirement [
11].
It seems therefore that the objective properties of quantum systems, if there are any, cannot be directly related to individual registrations, as they can in classical theories. (Paradoxically, most of the prejudices that hinder construction of quantum models of classical theories originate in the same classical theories.) However, there are observable properties in quantum mechanics that are different from values of observables [
24]:
Basic Ontological Hypothesis of Quantum Mechanics A sufficient condition for a property to be objective is that its value is uniquely determined by a preparation according to the rules of standard quantum mechanics. The “value” is the value of the mathematical expression that describes the property and it may be more general than just a real number. To observe an objective property, many registrations of one or more observables are necessary.
In fact, the Hypothesis just states explicitly the meaning that is tacitly given to preparation by standard quantum mechanics. More discussion on the meaning of preparation is in [
19,
34]. In any case, prepared properties can be assumed to be possessed by the prepared system without either violating any rule of standard quantum mechanics or contradicting possible results of any registration performed on the prepared system. The relation of registrations to such objective properties is only indirect: an objective property entails limitations on values of observables that will be registered. In many cases, we shall use the Hypothesis as a heuristic principle: it will just help to find some specific properties and then it will be forgotten, that is, an independent assumption will be made that these properties can be objective and each of them will be further studied.
We shall divide objective properties into structural (see
Section 1.0.1.) and
dynamical and describe the dynamical ones mathematically in
Section 2.1.2.. Examples of dynamical properties are a state, the average value and the variance of an observable. We shall define so-called simple objective properties and show first, that there is enough simple objective properties to characterize quantum systems completely (at least from the standpoint of standard quantum mechanics) and second, that the logic of simple properties satisfies Boolean lattice rules. Thus, a reasonable definition of a real object in quantum mechanics can be given (see
Section 2.1.2.).
Often, the Hypothesis meets one of the following two questions. First, how can the Hypothesis be applied to cosmology, when there was nobody there at the Big Bang to perform any state preparation? Second, a state preparation is an action of some human subject; how can it result in an objective property? Both objections result from a too narrow view of preparations (see
Section 1.0.2.). Moreover, the second objection is not much more than a pun. It is not logically impossible that a human manipulation of a system results in an objective property of the system. For example, pushing a snooker ball imparts it a certain momentum and angular momentum that can then be assumed to be objective properties of the ball.
One may wonder how the average of an observable in a state can be objective while the individual registered value of the observable are not because an average seems to be defined by the individual values. However, the average is a property of a prepared state and is, therefore, defined also by the preparation. The results of a huge number of individual registrations must add to their predetermined average. This can be seen very well for averages with small variances. In our theory of classical properties (
Section 4), the explanation of classical realism will be based on the objectivity of averages because some important classical observables will be defined as (quantum) averages of (quantum) observables in a family of specific (quantum) states that will be called
classicality states.
Let us compare our Realist Model Approach with what is usually understood as the Realism of Classical Theories. This is the philosophy that extends some successful features of classical theories, especially Newtonian mechanics, to the whole real world. There are three aspects of the Realism of Classical Theories that are not included in our Realist Model Approach. First, classical physics is deterministic, assuming that every event has a cause, but quantum theory does not tell us the causes of some of its events. Second, each interaction of classical physics is local in the sense that the mutual influence of two interacting systems asymptotically vanishes if the systems are separated by increasing spatial distance (cluster separability). But, in addition to local interactions, quantum theory contains mutual influence that is independent of distance (entanglement, mutual influence between particles of the same type). Third, classical physics requires a causal explanation for every correlation. This can be rigorously expressed by Reichennbach’s condition of
common cause [
35]. The existence of the common cause for some quantum correlation is incompatible with experiments (for discussion, see [
32]).
Our Realist Model Approach just states which ontological hypotheses can reasonably be made under the assumption that quantum mechanics is valid. A few words have to be said on ontological hypotheses. As is well-known, the objective existence of anything cannot be proved (even that of the chair on which I am now sitting, see, e.g., Ref. [
12], where this old philosophical tenet is explained from the point of view of a physicist). Thus, all such statements are only hypotheses, called ontological.
It is clear, however, that a sufficiently specific ontological hypothesis may lead to contradictions with some observations. Exactly that happens if one tries to require objectivity of quantum observables. (More precisely, the existence in question is that of systems with sufficient number of properties defined by values of observables.) Moreover, hypotheses that do not lead to contradictions may be useful. For example, the objective existence of the chair nicely explains why we all agree on its properties. Similarly, the assumption that quantum systems possess certain objective properties will be useful for the quantum theory of classical properties or for a solution of the problem of quantum measurement. The usefulness of ontological hypotheses in the work of experimental physicists has been analysed by Giere [
28], p. 115. The hypothesis in question is the existence of certain protons and neutrons. It explains, and helps to perform, the production, the manipulations, the control and the observations of proton and neutron beams in an experiment at Indiana University Cyclotron Facility. From the point of view of van Fraassen, the ontological hypotheses of the kind used by this paper might perhaps be considered as a part of theoretical models: such a hypothesis may or may not be “empirically adequate”.
The position on ontological hypotheses taken here is, therefore, rather different from what has been called “metaphysical realism” by Hillary Putnam [
36]: “There is exactly one true and complete description of ’the way the world is’ ”.
The Realist Model Approach enables us to characterize the subject of quantum mechanics as follows:
Quantum mechanics studies objective properties of existing microscopic objects.
This can be contrasted with the usual cautious characterization of the subject, as e.g. [
21], p. 13:
...quantum theory is a set of rules allowing the computation of probabilities for the outcomes of tests [registrations] which follow specific preparations.
1.0.4. Probability and information
Let us return to Tonomura experiment. At each individual registration, a definite value of the observable is obtained. Quantum mechanics cannot predict which value it will be, but it can give the probability that the value will be obtained. This is a general situation for any registration. In this way, registrations introduce a specific statistical element into quantum mechanics.
A correct understanding of probability and information is an important part in the conceptual framework of the theory. The discussion whether probability describes objective properties that can be observed in nature or subjective states of the knowledge of some humans has raged since the invention of probability calculus by Jacob Bernoulli and Pierre-Simon Laplace [
37]. The cause of this eternal argument might be that the dispute cannot be decided: probability has both aspects, ontological and epistemic [
24].
Probability is a function of a proposition
A and its value,
, is a measure of the degree of certainty that
A is true. As a function on a Boolean lattice of propositions, it satisfies Cox’s axioms [
37]. Then it becomes a real additive measure on the lattice. Whether a proposition is true or false must be decided by observation, at least in principle. Hence, the probability always concerns objective events, at least indirectly.
As an example, consider the Tonomura experiment. The probability concerns the proposition that the value of observable is individually registered on an electron is . The value of the probability can be verified by studying an ensemble of such registrations. Indeed, if we perform a huge number of such registrations, we obtain an interference pattern that approximately reproduces the smooth probability distribution obtained by calculating the quantum mechanical model of an electron in Tonomura’s apparatus. It is a real interference pattern shown by the apparatus.
We have used the term “ensemble” with the meaning of a statistical ensemble of real events or objects. Here, the objectification requirement is involved. The value obtained in each individual registration is considered as a real property of the system consisting of the electron and the apparatus. Then, the probability concerns both the lack of knowledge of what objectively happens and properties of real systems. We emphasize that is not the probability that the prepared electron possesses value of observable but the probability that a registration will give such a value.
Another question is whether the individual outcomes are in principle predictable from some more detailed initial conditions (the so-called “hidden variables”) on the electron that we do not know. Quantum mechanics does not contain information on any such conditions. It does not deliver these predictions and it would even be incompatible with any ’deeper’ theory that did (see
Section 2.2.4.). We shall, therefore, assume that they are objectively unpredictable.
Let us describe the general framework that is necessary for any application of probability theory. First, there is a system, denote it by . Second, certain definite objective conditions are imposed on the system, e.g., it is prepared as in the example above and observable is registered. In general, there must always be an analogous set of conditions, let us denote it by . To each system subject to condition , possibilities in some range are open. These possibilities are described by a set of propositions that form a Boolean lattice . A probability distribution is a real additive measure on .
In quantum mechanics, is usually constructed with the help of some observable, say. If is a discrete observable, its value set Ω is at most countable, . Then the single-element sets , are atoms of that generate and the probability distribution , , can be calculated from by means of Cox’s axioms. The atoms are called outcomes. If is a continuous observable, then there are no atoms but continuous observables can be considered as idealizations of more realistic discrete observables with well-defined atoms. For example, in Tonomura’s experiment, observable is defined by the photo-multiplier cells in the micro-channel plate, and not only is discrete but also even has a finite number of values.
If condition
is reproducible or it obtains spontaneously sufficiently often (which is mostly the case in physics), anybody can test the value of the probabilities because probability theory enables us to calculate the frequencies of real events starting from any theoretical probability distribution and the frequencies are measurable [
37]. The probability distribution
is therefore an objective property of condition
on
. It is so even in cases when the outcomes can be in principle predicted if occurrence of more detailed conditions is observable and can in principle be known. More precisely, this would depend on whether condition
can be decomposed into other conditions
,
in the following sense. Condition
can be viewed as a logical statement ’
satisfies
’. Let
, where ∨ is the logical union (disjunction),
each be still recognizable and reproducible,
each outcome allowed by is uniquely determined by one of ’s.
It follows that
for all
, where ∧ is logical intersection (conjunction). Even in such a case, condition
itself leaves the system a definite amount of freedom that can be described in all detail by the probability distribution
and it is an objective, verifiable property of
alone. And, if we know only that condition
obtains and that a probability distribution is its objective property, then this probability distribution describes the state of our knowledge, independently of whether the conditions
do exist and we just do not know which of them obtains in each case or not. Examples of these two different situations are given by standard quantum mechanics, which denies the existence of
’s, and the Bohm–de Broglie pilot wave theory, which specifies such
’s.
Of course, there are also cases where some condition,
, say, occurs only once so that a measurement of frequencies is not possible. Then, no probability distribution associated with
can be verified so that our knowledge about
is even more incomplete. However, in some such cases, one can still give a rigorous sense to the question [
37], p. 343 (see also the end of this section): “What is the most probable probability distribution associated with
?” One can then base one’s bets on such a probability distribution. Such a probability distribution can be considered as an objective property of
and again, there is no contradiction between the objective and subjective aspects of probability.
In quantum mechanics, it is also possible to mix preparations in a random way. Suppose we have two preparations,
and
, and can mix them randomly by e.g. mixing the resulting particle beams in certain proportions
and
,
. Then, each particle in the resulting beam is either prepared by
, with probability
, or by
, with probability
. In this way, another kind of statistical element can be introduced into quantum theory. This element will be discussed in
Section 2.1.2..
Condition is defined by the two beams and their mixing so that the ensemble has, say, N particles. Then, can be decomposed in , where is the preparation by and , . We can know and because we know the intensity of the corresponding beams but it is unlikely that we also know whether a given element of the ensemble has been prepared by or .
An important role in probability theory is played by entropy. Entropy is a certain functional of that inherits both objective and subjective aspects from probability. Discussions similar to those about probability spoil the atmosphere about entropy. The existence of a subjective aspect of entropy—the lack of information—seduces people to ask confused questions such as: Can a change of our knowledge about a system change the system energy?
The general definition of entropy as a measure of missing information has been given by Shannon [
38] and its various applications to communication theory are, e.g., described in the book by Pierce [
39]. Our version is:
Definition 1 Let be a probability distribution and let be the atoms of . Then the entropy of is Let us return to the quantum-mechanical example in order to explain which information is concerned. After the choice of preparation and registration devices, we do not know what will be the outcome of a registration but we just know that any outcome
of the registration has probability
. After an individual registration, one particular outcome will be known with certainty. The amount of information gained by the registration is the value of
S given by Equation (
1). For more detail, see Ref. [
21]. Thus, the value of
S measures the lack of information before the registration.
The entropy and the so-called Maximum Entropy Principle (MEP) have become important notions of mathematical probability calculus, see, e.g., Ref. [
37]. (There is also a principle of statistical thermodynamics that carries the same name but ought not to be confused with the mathematical MEP.) The mathematical problem MEP solves can be generally characterized as follows. Let system
, condition
and lattice
with atoms
be given. Let there be more than one set of
’s that appears compatible with
. How the probabilities
are to be assigned so that condition
is properly accounted for without any additional bias? Such
’s yield the maximum of
S as given by (1). MEP clearly follows from the meaning of entropy as a measure of lack of information. We shall use this kind of MEP in
Section 4.2.
Part I
Corrected language of quantum mechanics
The origin of quantum mechanics can be traced back to the study of a few real systems: hydrogen atom and black-body radiation. The resulting successful models used some new concepts and methods that were readily generalized so that they formed a first version of a new theoretical language. This language was then used to construct models of some aspects of further real objects, such as atoms and molecules, solid bodies, etc., and this activity lead in turn to the refinement of the language.
This evolution does not seem to be finished. A large number of real objects, the so-called classical world, have as yet no satisfactory quantum models. Our own attempts [
15] and [
19] at constructing such models have lead to some changes in the quantum language. The first part of this review starting here is an attempt at a systematic formulation of this new language.
The general notions of a theoretical language are imported from some mathematical theory and satisfy the corresponding relations given by the axioms and theorems of the mathematical theory. They are rather abstract and by themselves, they do not possess any direct connection to real physical systems. However, as building blocks of various models that do possess such connections, some of them acquire physical meaning. Such a model-mediated physical interpretation can be postulated for most of the mathematical notions by basic assumptions that will be called rules to distinguish them from the axioms of the mathematical theory. What can be derived from these rules and axioms will be called propositions. We shall however formulate only most important theorems and propositions explicitly as such in order to keep the text smooth.
A state of a quantum system is determined by a preparation while a value of an observable is determined by a registration. The notions of preparation and registration are used in their empirical (see
Section 1.0.2.) meaning first, just to catch the model-mediated significance of mathematical notions, and the quantum mechanical models explaining relevant aspects of preparation and registration processes will be constructed later. The calculation of a state from classical conditions defined by the preparation needs a sophisticated model of the mature quantum mechanics. Similarly, to calculate an observable from classical properties of the registration device, a quantum model must be used. Only in
Section 4 and
Section 5 shall we be able to find the way from the empirical description of preparation and registration to a particular mathematical state or observable.