Self-Energy Closure for Inhomogeneous Turbulent Flows and Subgrid Modeling
Abstract
:1. Introduction
2. Equations for Inhomogeneous Fluid Turbulence
2.1. Quasigeostrophic Equations for Turbulent Flow
3. Inhomogeneous DIA Closure Equations — IDIA
3.1. Statistical Closure Equations
3.2. Langevin Equation for IDIA Closure
4. Self-Energy Closure Equations — SE
4.1. Statistical Closure Equations
4.2. Langevin Equation for SE Closure
5. Subgrid-Scale Parameterizations
5.1. Large Eddy Simulations with SE Subgrid Model
5.1.1. Mean-Field Equation for Large Eddy Simulations with SE Subgrid Model
5.1.2. Fluctuating Field Equation for Large Eddy Simulations with SE Subgrid Model
5.2. Self-Energy Closure with SE Subgrid Model
Mean-Field Equation for Self-Energy Closure with SE Subgrid Model
5.3. Response Function and Covariance for Self-Energy Closure with SE Subgrid Model
5.4. Langevin Equation for Self-Energy Closure with Subgrid-Scale Parameterizations
6. Effective Dissipation and Viscosity Parameterizations
7. Derivation of QDIA Closure from Self-Energy Closure
8. Closure Equations for Quasigeostrophic Turbulent Flow on a Sphere
8.1. Quasigeostrophic Equations for Flow on the Sphere
8.2. Self-Energy Closure for Inhomogeneous Turbulent Flow on the Sphere
8.3. Quasi-Diagonal Self-Energy Closure for Inhomogeneous Turbulent Flow on the Sphere
8.4. QDIA Closure for Inhomogeneous Turbulent Flow on the Sphere
9. Discussion and Conclusions
9.1. Self-Energy LET and SCFT Inhomogeneous Closures
9.2. Regularization, Vertex Renormalization and Non-Gaussian Initial Conditions
9.3. Maximum Entropy States of Canonical Equilibrium
References
- McComb, W.D. The Physics of Fluid Turbulence; Clarendon: Oxford, UK, 1990; p. 572. [Google Scholar]
- Kraichnan, R.H. The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 1959, 5, 497–453. [Google Scholar] [CrossRef]
- Herring, J.R. Self-consistent-field approach to turbulence theory. Phys. Fluid. 1965, 8, 2219–2225. [Google Scholar] [CrossRef]
- McComb, W.D. A local energy-transfer theory of isotropic turbulence. J. Phys. A 1974, 7, 632–649. [Google Scholar] [CrossRef]
- Frederiksen, J.S.; Davies, A.G.; Bell, R.C. Closure theories with non-Gaussian restarts for truncated two-dimensional turbulence. Phys. Fluid. 1994, 6, 3153–3163. [Google Scholar] [CrossRef]
- Kiyani, K.; McComb, W.D. Time-ordered fluctuation-dissipation relation for incompressible isotropic turbulence. Phys. Rev. E 2004, 70, 066303. [Google Scholar] [CrossRef]
- Frederiksen, J.S.; Davies, A.G. Dynamics and spectra of cumulant update closures for two-dimensional turbulence. Geophys. Astrophys. Fluid Dynam. 2000, 92, 197–231. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Dissipation of energy in locally isotropic turbulence. Proc. USSR Acad. Sci. 1941, 32, 16–18. [Google Scholar] [CrossRef]
- Frederiksen, J.S.; Davies, A.G. The regularized DIA closure for two-dimensional turbulence. Geophys. Astrophys. Fluid Dynam. 2004, 98, 203–223. [Google Scholar] [CrossRef]
- Frederiksen, J.S. Subgrid-scale parameterizations of eddy-topographic force, eddy viscosity and stochastic backscatter for flow over topography. J. Atmos. Sci. 1999, 56, 1481–1494. [Google Scholar] [CrossRef]
- Frederiksen, J.S.; O'Kane, T.J. Inhomogeneous closure and statistical mechanics for Rossby wave turbulence over topography. J. Fluid Mech. 2005, 539, 137–165. [Google Scholar] [CrossRef]
- Frederiksen, J.S. Statistical dynamical closures and subgrid modeling for QG and 3D inhomogeneous turbulence. Entropy 2012, 14, 32–57. [Google Scholar] [CrossRef]
- O'Kane, T.J.; Frederiksen, J.S. The QDIA and regularized QDIA closures for inhomogeneous turbulence over topography. J. Fluid. Mech. 2004, 65, 133–165. [Google Scholar] [CrossRef]
- O'Kane, T.J.; Frederiksen, J.S. A comparison of statistical dynamical and ensemble prediction methods during blocking. J. Atmos. Sci. 2008, 65, 426–447. [Google Scholar] [CrossRef]
- O'Kane, T.J.; Frederiksen, J.S. Comparison of statistical dynamical, square root and ensemble Kalman filters. Entropy 2008, 10, 684–721. [Google Scholar] [CrossRef]
- O'Kane, T.J.; Frederiksen, J.S. Statistical dynamical subgrid-scale parameterizations for geophysical flows. Phys. Scr. 2008, T132, 014033. [Google Scholar] [CrossRef]
- Frederiksen, J.S.; O'Kane, T.J. Entropy, closures and subgrid modeling. Entropy 2008, 10, 635–683. [Google Scholar] [CrossRef]
- Rose, H.A. An efficient non-Markovian theory of non-equilibrium dynamics. Physica D 1985, 14, 216–226. [Google Scholar] [CrossRef]
- Roman, P. Introduction to Quantum Field Theory; Wiley & Sons: New York, NY, USA, 1969. [Google Scholar]
- Martin, P.C.; Siggia, E.D.; Rose, H.A. Statistical dynamics of classical systems. Phys. Rev. A 1973, 8, 423–437. [Google Scholar] [CrossRef]
- Krommes, J.A. Fundamental descriptions of plasma turbulence in magnetic fields. Phys. Reports 2002, 1–352. [Google Scholar] [CrossRef]
- Kraichnan, R.H. Test-field model for inhomogeneous turbulence. J. Fluid Mech. 1972, 56, 287–304. [Google Scholar] [CrossRef]
- Kraichnan, R.H. Eddy viscosity in two and three dimensions. J. Atmos. Sci. 1976, 33, 1521–1536. [Google Scholar] [CrossRef]
- Rose, H.A. Eddy diffusivity, eddy noise and subgrid-scale modelling. J. Fluid Mech. 1977, 81, 719–734. [Google Scholar] [CrossRef]
- Leith, C.E. Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer. Phys. Fluid. Fluid Dynam. 1990, 2, 297–299. [Google Scholar] [CrossRef]
- Smagorinsky, J. General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Leslie, D.C.; Quarini, G.L. The application of turbulence theory to the formulation of subgrid modelling procedures. J. Fluid Mech. 1979, 91, 65–91. [Google Scholar] [CrossRef]
- Chollet, J.P.; Lesieur, M. Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. J. Atmos. Sci. 1981, 38, 2747–2757. [Google Scholar] [CrossRef]
- Chasnov, J.R. Simulation of the Kolmogorov inertial subrange using an improved subgrid model. Phys. Fluid. Fluid Dynam. 1991, 3, 188–200. [Google Scholar] [CrossRef]
- Domaradzki, J.A.; Liu, W.; Bracket, M.E. An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence. Phys. Fluid. Fluid Dynam. 1993, 5, 1747–1759. [Google Scholar] [CrossRef]
- McComb, W.D.; Watt, A.G. Conditional averaging procedure for the elimination of the small-scale modes from incompressible fluid turbulence at high Reynolds numbers. Phys. Rev. Lett. 1990, 65, 3281–3284. [Google Scholar] [CrossRef] [PubMed]
- McComb, W.D.; Hunter, A.; Johnson, C. Conditional mode elimination and the subgrid-modelling problem for isotropic turbulence. Phys. Fluid. 2001, 13, 2030–2044. [Google Scholar] [CrossRef]
- McComb, W.D.; Johnson, C. Conditional mode elimination and scale-invariant dissipation in isotropic turbulence. Physica A 2001, 292, 346–382. [Google Scholar] [CrossRef]
- Frederiksen, J.S.; Davies, A.G. Eddy viscosity and stochastic backscatter parameterizations on the sphere for atmospheric circulation models. J. Atmos. Sci. 1997, 54, 2475–2492. [Google Scholar] [CrossRef]
- Frederiksen, J.S.; Kepert, S.M. Dynamical subgrid-scale parameterizations from direct numerical simulations. J. Atmos. Sci. 2006, 63, 3006–3019. [Google Scholar] [CrossRef]
- Zidikheri, M.J.; Frederiksen, J.S. Stochastic subgrid parameterizations for simulations of atmospheric baroclinic flows. J. Atmos. Sci. 2009, 66, 2844–2856. [Google Scholar] [CrossRef]
- Zidikheri, M.J.; Frederiksen, J.S. Stochastic modelling of unresolved eddy fluxes. Geophys. Astrophys. Fluid Dynam. 2010, 104, 323–348. [Google Scholar] [CrossRef]
- Zidikheri, M.J.; Frederiksen, J.S. Stochastic subgrid-scale modelling for non-equilibrium geophysical flows. Phil. Trans. R. Soc. A 2010, 368, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Kitsios, V.; Frederiksen, J.S.; Zidikheri, M.J. Subgrid model with scaling laws for atmospheric simulations. J. Atmos. Sci. 2012, 69, 1427–1445. [Google Scholar] [CrossRef]
- Palmer, T.N. A nonlinear dynamical perspective on model error: A proposal for nonlocal stochastic-dynamic parameterization in weather and climate prediction models. Quart. J. R. Met. Soc. 2001, 127, 279–304. [Google Scholar] [CrossRef]
- Franzke, C.; Majda, A.J. Low-order stochastic mode reduction for a prototype atmospheric GCM. J. Atmos. Sci. 2006, 63, 457–479. [Google Scholar] [CrossRef]
- Seiffert, R.; Blender, R.; Fraedrich, K. Subscale forcing in a global atmospheric circulation model and stochastic parameterisation. Quart. J. R. Met. Soc. 2006, 132, 1–17. [Google Scholar] [CrossRef]
- Shutts, G.J. A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. R. Met. Soc. 2005, 131, 3079–3102. [Google Scholar] [CrossRef]
- Berner, J.; Shutts, G.; Leutbecher, M.; Palmer, T.N. A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci. 2009, 66, 603–626. [Google Scholar] [CrossRef]
- Frederiksen, J.S. Singular vectors, finite-time normal modes and error growth during blocking. J. Atmos. Sci. 2000, 57, 312–333. [Google Scholar] [CrossRef]
- Berner, J.; Doblas-Reyes, F.J.; Palmer, T.N.; Shutts, G.; Weisheimer, W. Impact of quasi-stochastic cellular automaton backscatter on the systematic error and seasonal prediction skill of a global climate model. Phil. Trans. R. Soc. A 2008, 366, 2561–2579. [Google Scholar] [CrossRef] [PubMed]
- Seiffert, R.; von Storch, J.-S. Impact of atmospheric small-scale fluctuations on climate sensitivity. Geophys. Res. Lett. 2008, 35, L10704. [Google Scholar] [CrossRef]
- Frederiksen, J.S.; Frederiksen, C.S. Southern hemisphere storm tracks, blocking and low-frequency anomalies in a primitive equation model. J. Atmos. Sci. 1993, 50, 3148–3163. [Google Scholar]
- Frederiksen, J.S. Renormalized closure theory and subgrid-scale parameterizations for two-dimensional turbulence. In Nonlinear Dynamics: From Lasers to Butterflies; World Scientific: Singapore, 2003; pp. 225–256. [Google Scholar]
- Kraichnan, R.H. Dynamics of nonlinear stochastic systems. J. Math. Phys. 1961, 2, 124–148. [Google Scholar] [CrossRef]
- Bowman, J.C.; Krommes, J.A.; Ottaviani, M. The realizable Markovian closure. I. General theory, with application to three-wave dynamics. Phys. Fluid. B 1993, 5, 3558–3589. [Google Scholar] [CrossRef]
- Frederiksen, J.S.; Sawford, B.L. Statistical dynamics of two-dimensional inviscid flow on a sphere. J. Atmos. Sci. 1980, 37, 717–732. [Google Scholar]
- Carnevale, G.F.; Frederiksen, J.S. A statistical dynamical theory of strongly nonlinear internal gravity waves. Geophys. Astrophys. Fluid Dynam. 1983, 23, 175–207. [Google Scholar] [CrossRef]
- Franzke, C.; Majda, A.; Branstator, G. The origin of nonlinear signatures of planetary wave dynamics: Mean phase space tendencies and contributions from non-Gaussianity. J. Atmos. Sci. 2007, 64, 3987–4003. [Google Scholar] [CrossRef]
- Salmon, R.; Holloway, G.; Hendershott, M. The equilibrium statistical mechanics of simple quasigeostrophic models. J. Fluid Mech. 1976, 75, 691–703. [Google Scholar] [CrossRef]
- Frederiksen, J.S. Eastward and westward flows over topography in nonlinear and linear barotropic models. J. Atmos. Sci. 1982, 39, 2477–2489. [Google Scholar]
- Carnevale, G.; Frederiksen, J. Nonlinear stability and statistical mechanics of flow over topography. J. Fluid Mech. 1987, 175, 157–181. [Google Scholar] [CrossRef]
- Majda, A.; Wang, X. Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Frederiksen, J.S. Nonlinear stability of baroclinic flows over topography. Geophys. Astrophys. Fluid Dynam. 1991, 57, 85–97. [Google Scholar]
- Frederiksen, J.S. Nonlinear studies on the effect of topography on baroclinic zonal flows. Geophys. Astrophys. Fluid Dynam. 1991, 59, 57–82. [Google Scholar]
Appendices
Appendix A: Spectral Equations for Inhomogeneous Fluid Turbulence
A.1. Spectral Equations for Quasigeostrophic Turbulent Flow in Planar Geometry
A.2. Spectral Equations for Three-Dimensional Turbulent Flow
A.3. Spectral Equations for Quasigeostrophic Turbulent Flow on the Sphere
Appendix B: Perturbation Theory
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Frederiksen, J.S. Self-Energy Closure for Inhomogeneous Turbulent Flows and Subgrid Modeling. Entropy 2012, 14, 769-799. https://doi.org/10.3390/e14040769
Frederiksen JS. Self-Energy Closure for Inhomogeneous Turbulent Flows and Subgrid Modeling. Entropy. 2012; 14(4):769-799. https://doi.org/10.3390/e14040769
Chicago/Turabian StyleFrederiksen, Jorgen S. 2012. "Self-Energy Closure for Inhomogeneous Turbulent Flows and Subgrid Modeling" Entropy 14, no. 4: 769-799. https://doi.org/10.3390/e14040769
APA StyleFrederiksen, J. S. (2012). Self-Energy Closure for Inhomogeneous Turbulent Flows and Subgrid Modeling. Entropy, 14(4), 769-799. https://doi.org/10.3390/e14040769