# On the Thermodynamics of Classical Micro-Canonical Systems

^{*}

## Abstract

**:**

## 1. Introduction

**Figure 1.**Density of states of the pendulum in reduced units. Shown is the function ${\omega}_{0}\left(u\right)$ as defined by (36).

## 2. The Configurational Subsystem

## 3. Rényi’s Entropy Function

## 4. The pendulum

## 5. Conclusions

## Appendix

## References and Notes

- Gross, D. Statistical decay of very hot nuclei, the production of large clusters. Rep. Progr. Phys.
**1990**, 53, 605–658. [Google Scholar] [CrossRef] - Hüller, A. First order phase transitions in the canonical and the microcanonical ensemble. Z. Phys. B
**1994**, 93, 401–405. [Google Scholar] [CrossRef] - Gross, D. Microcanonical Thermodynamics: Phase Transitions in Small Systems; World Scientific: Singapore, 2001. [Google Scholar]
- Behringer, H. Critical properties of the spherical model in the microcanonical formalism. J. Stat. Mech.
**2005**, 2005, P06014. [Google Scholar] [CrossRef] - Dunkel, J.; Hilbert, S. Phase transitions in small systems: Microcanonical versus canonical ensembles. Physica A
**2006**, 370, 390–406. [Google Scholar] [CrossRef] - Hilbert, S.; Dunkel, J. Nonanalytic microscopic phase transitions and temperature oscillations in the microcanonical ensemble: An exactly solvable one-dimensional model for evaporation. Phys. Rev. E
**2006**, 74, 011120. [Google Scholar] [CrossRef] - Behringer, H.; Pleimling, M. Continuous phase transitions with a convex dip in the microcanonical entropy. Phys. Rev. E
**2006**, 74, 011108. [Google Scholar] [CrossRef] - Campa, A.; Ruffo, S. Microcanonical solution of the mean-field phi4-model: Comparison with time averages at finite size. Physica A
**2006**, 369, 517–528. [Google Scholar] [CrossRef] - Naudts, J.; Van der Straeten, E. A generalized quantum microcanonical ensemble. J. Stat. Mech.
**2006**, 2006, P06015. [Google Scholar] [CrossRef] - Campa, A.; Ruffo, S.; Touchette, H. Negative magnetic susceptibility and nonequivalent ensembles for the mean-field phi-4 spin model. Physica A
**2007**, 385, 233–248. [Google Scholar] [CrossRef] - Casetti, L.; Kastner, M.; Nerattini, R. Kinetic energy and microcanonical nonanalyticities in finite and infinite systems. J. Stat. Mech.
**2009**, 2009, P07036. [Google Scholar] [CrossRef] - Kastner, M. Microcanonical entropy of the spherical model with nearest- neighbour interactions. J. Stat. Mech.
**2009**, 2009, P12007. [Google Scholar] [CrossRef] - Kastner, M.; Pleimling, M. Microcanonical phase diagrams of short-range ferromagnets. Phys. Rev. Lett.
**2009**, 102, 240604. [Google Scholar] [CrossRef] [PubMed] - Caiani, L.; Casetti, L.; Clementi, C.; Pettini, M. Geometry of dynamics, Lyapunov exponents, and phase transitions. Phys. Rev. Lett.
**1997**, 79, 4361–4364. [Google Scholar] [CrossRef] - Franzosi, R.; Pettini, M.; Spinelli, L. Topology and phase transitions: Paradigmatic evidence. Phys. Rev. Lett.
**2000**, 84, 2774–2777. [Google Scholar] [CrossRef] [PubMed] - Angelani, L.; Casetti, L.; Pettini, M.; Ruocco, G.; Zamponi, F. Topological signature of first-order phase transitions in a mean-field model. Europhys. Lett.
**2003**, 62, 775–781. [Google Scholar] [CrossRef] - Franzosi, R.; Pettini, M. Theorem on the origin of phase transitions. Phys. Rev. Lett.
**2004**, 92, 060601. [Google Scholar] [CrossRef] [PubMed] - Kastner, M. Phase transitions and configuration space topology. Rev. Mod. Phys.
**2008**, 80, 167–187. [Google Scholar] [CrossRef] - Kastner, M.; Schnetz, O. Phase transitions induced by saddle points of vanishing curvature. Phys. Rev. Lett.
**2008**, 100, 160601. [Google Scholar] [CrossRef] [PubMed] - Kastner, M. Energy landscapes and their relation to thermodynamic phase transitions. J. Stat. Mech.
**2009**, 2009, P02016. [Google Scholar] [CrossRef] - Naudts, J.; Baeten, M. Non-extensivity of the configurational density distribution in the classical microcanonical ensemble. Entropy
**2009**, 11, 285–294. [Google Scholar] [CrossRef] - Naudts, J. Estimators, escort probabilities, and phi-exponential families in statistical physics. J. Ineq. Pure Appl. Math.
**2004**, 5, 102. [Google Scholar] - Naudts, J. Generalised exponential families and associated entropy functions. Entropy
**2008**, 10, 131–149. [Google Scholar] [CrossRef] - Naudts, J. The q-exponential family in statistical physics. Cent. Eur. J. Phys.
**2009**, 7, 405–413. [Google Scholar] [CrossRef] - In statistical physics there is a consensus to define phase transitions as entropy driven collective phenomena. In our example of the pendulum the transition is entropy driven and two phases can be distinguished. But there is of course no collective effect.
- Naudts, J. Boltzmann entropy and the microcanonical ensemble. Europhys. Lett.
**2005**, 69, 719–724. [Google Scholar] [CrossRef] - Gibbs, J.W. Elementary Principles in Statistical Mechanics, Reprint; Dover: New York, NY, USA, 1960. [Google Scholar]
- Hertz, P. Über die mechanischen grundlagen der thermodynamik. Ann. Phys. (Leipzig)
**1910**, 338, 225–274, 537–552. [Google Scholar] [CrossRef] - Campisi, M.; Kobe, D.H. Derivation of the Boltzmann principle. Am. J. Phys.
**2010**, 78, 608–615. [Google Scholar] [CrossRef] - The reason why many authors still use (1) instead of (3) is, probably, that in the thermodynamic limit it does not matter too much which entropy function one uses.
- Schlüter, A. Zur Statistik klassischer Gesamtheiten. Z. Naturforschg.
**1948**, 3a, 350–360. [Google Scholar] - Pearson, E.M.; Halicioglu, T.; Tiller, W.A. Laplace-transform technique for deriving thermodynamic equations from the classical microcanonical ensemble. Phys. Rev. A
**1985**, 32, 3030–3039. [Google Scholar] [CrossRef] [PubMed] - Shirts, R.B.; Burt, S.R.; Johnson, A.M. Periodic boundary condition induced breakdown of the equipartition principle and other kinetic effects of finite sample size in classical hard-sphere molecular dynamics simulation. J. Chem. Phys.
**2006**, 125, 164102. [Google Scholar] [CrossRef] [PubMed] - Note that the normalisation here differs from that in [21].
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys.
**1988**, 52, 479–487. [Google Scholar] [CrossRef] - Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: New York, NY, USA, 2009. [Google Scholar]
- In [23] the definition (14) of the entropy function contains an extra factor 1/(2 − q) to fix its normalisation and to make it unique within a class of properly normalised entropy functions. This normalisation factor is not wanted in the present paper because it becomes negative when we use q = 3 later on in the example of the pendulum.
- McQuarrie, D.A. Statistical Mechanics; University Science Books: Sausalito, CA, USA, 2000. [Google Scholar]
- Lesche, B. Instabilities of Rényi entropies. J. Stat. Phys.
**1982**, 27, 419–423. [Google Scholar] [CrossRef] - Abe, S. Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: A basis for q-exponential distributions. Phys. Rev. E
**2002**, 66, 046134. [Google Scholar] [CrossRef] - Naudts, J. Continuity of a class of entropies and relative entropies. Rev. Math. Phys.
**2004**, 16, 809–822, Errata, Rev. Math. Phys.**2009**, 21, 947–948.. [Google Scholar] [CrossRef]

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Baeten, M.; Naudts, J.
On the Thermodynamics of Classical Micro-Canonical Systems. *Entropy* **2011**, *13*, 1186-1199.
https://doi.org/10.3390/e13061186

**AMA Style**

Baeten M, Naudts J.
On the Thermodynamics of Classical Micro-Canonical Systems. *Entropy*. 2011; 13(6):1186-1199.
https://doi.org/10.3390/e13061186

**Chicago/Turabian Style**

Baeten, Maarten, and Jan Naudts.
2011. "On the Thermodynamics of Classical Micro-Canonical Systems" *Entropy* 13, no. 6: 1186-1199.
https://doi.org/10.3390/e13061186