# A Dynamic Model of Information and Entropy

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Analysis

**Figure 1.**Information I (integration over imaginary ct-axis) and entropy S (integration over real x-axis) due to a point of non-analyticity (pole) at the space-time position z

_{0}.

## 3. Discussion

**Figure 2.**(a) Right-handed polarisation helical info-entropy wave, propagating in positive ${x}_{i}$-direction given by $\underset{\_}{I}\times \underset{\_}{S}$. (b) Left-handed polarisation helical info-entropy wave travelling in same direction.

## 4. Conclusions

## References

- Bennett, C.H. Demons, engines and the second law. Sci. Am.
**1987**, 257, 88–96. [Google Scholar] [CrossRef] - Landauer, R. Computation: A fundamental physical view. Phys. Scr.
**1987**, 35, 88–95. [Google Scholar] [CrossRef] - Brillouin, L. Science & Information Theory; Academic: New York, NY, USA, 1956. [Google Scholar]
- Landauer, R. Information is physical. Phys. Today
**1991**, 44, 23–29. [Google Scholar] [CrossRef] - Parker, M.C.; Walker, S.D. Information transfer and Landauer’s principle. Opt. Commun.
**2004**, 229, 23–27. [Google Scholar] [CrossRef] - Parker, M.C.; Walker, S.D. Is computation reversible? Opt. Commun.
**2007**, 271, 274–277. [Google Scholar] [CrossRef] - Garrison, J.C.; Mitchell, M.W.; Chiao, R.Y.; Bolda, E.L. Superluminal signals: Causal loop paradoxes revisited. Phys. Lett. A
**1998**, 245, 19–25. [Google Scholar] [CrossRef] - Brillouin, L. Wave Propagation and Group Velocity; Academic: New York, NY, USA, 1960. [Google Scholar]
- Stenner, M.D.; Gauthier, D.J.; Neifeld, M.A. The speed of information in a “fast-light” optical medium. Nature
**2003**, 425, 695–697. [Google Scholar] [CrossRef] [PubMed] - Wynne, K. Causality and the nature of information. Opt. Commun.
**2002**, 209, 85–100. [Google Scholar] [CrossRef] - Carey, J.J.; Zawadzka, J.; Jaroszynski, D.A.; Wynne, K. Noncausal time response in frustrated total internal reflection. Phys. Rev. Lett.
**2000**, 84, 1431–1434. [Google Scholar] [CrossRef] [PubMed] - Heitmann, W.; Nimtz, G. On causality proofs of superluminal barrier traversal of frequency band limited wave packets. Phys. Lett. A
**1994**, 196, 154–158. [Google Scholar] [CrossRef] - Arfken, G.B.; Weber, H.J. Mathematical Methods for Physicists; Academic: New York, NY, USA, 1995; Chapter 6. [Google Scholar]
- Primas, H. Time, Temporality, Now: The Representation of Facts in Physical Theories; Springer: Berlin, Germany, 1997; pp. 241–263. [Google Scholar]
- Gershenfeld, N. The Physics of Information Technology; Cambridge University Press: Cambridge, UK, 2000; Chapter 4. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons: New York, NY, USA, 1999; Chapter 11. [Google Scholar]
- Peiponen, K.-E.; Vartianen, E.M.; Asakura, T. Dispersion, Complex Analysis, and Optical Spectroscopy: Classical Theory; Springer: Berlin, Germany, 1999. [Google Scholar]
- Watson, J.D.; Crick, F.H.C. A structure for deoxyribose nucleic acid. Nature
**1953**, 171, 737–738. [Google Scholar] [CrossRef] [PubMed] - Zurek, W.H. Complexity, Entropy and the Physics of Information; Addison-Wesley: Redwood City, CA, USA, 1989; Volume 8. [Google Scholar]
- Siegel, J.S. Single-handed cooperation. Nature
**2001**, 409, 777–778. [Google Scholar] [CrossRef] [PubMed]

## Appendix

^{th}space-dimension $(i=\text{1,2,3})$ such that for a pole travelling in the $\underset{\_}{{x}_{i}}$-direction (i.e., equivalent to a plane wave travelling in the $\underset{\_}{{x}_{i}}$-direction) the info- and entropy-fields vibrate in the mutually-orthogonal $\underset{\_}{{x}_{j}}$- and $\underset{\_}{{x}_{k}}$-directions respectively, where again $j,k=\text{1,2,3}$ and $i\ne j\ne k$. The vector descriptions of the I and S fields are:

© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Parker, M.C.; Walker, S.D. A Dynamic Model of Information and Entropy. *Entropy* **2010**, *12*, 80-88.
https://doi.org/10.3390/e12010080

**AMA Style**

Parker MC, Walker SD. A Dynamic Model of Information and Entropy. *Entropy*. 2010; 12(1):80-88.
https://doi.org/10.3390/e12010080

**Chicago/Turabian Style**

Parker, Michael C., and Stuart D. Walker. 2010. "A Dynamic Model of Information and Entropy" *Entropy* 12, no. 1: 80-88.
https://doi.org/10.3390/e12010080