A Weighted Generalized Maximum Entropy Estimator with a Data-driven Weight
Abstract
:1. Introduction
2. Generalized Maximum Entropy Estimator
2.1. The ME principle
2.2. The GME estimator
2.3. Statistical properties of GME
3. The Weighted GME Estimator with a Data-driven Weight
3.1. The weighted GME estimator (W-GME)
3.2. W-GME with a data-driven weight
- Given the coefficient support , disturbance support , and weight , estimate β using the W-GME method (6), on observations, with the observation omitted for . Denote each estimate . For simplicity, we use uniform prior distributions for and .
- Calculate the squared prediction error for each t.
- Select γ such that it minimizes the sum of the squared prediction errors .
4. Monte Carlo Simulations
4.1. Regressions with normal errors
z | κ | OLS | W-GME() | GME | OLS | W-GME() | GME |
10 | 1 | 3.84 | 4.06 (0.26) | 3.57 | 3.84 | 4.26 (0.24) | 3.67 |
10 | 7.38 | 5.97 (0.24) | 5.37 | 6.57 | 5.77 (0.23) | 4.91 | |
20 | 10.83 | 7.29 (0.24) | 6.78 | 10.63 | 7.06 (0.22) | 6.49 | |
50 | 19.85 | 8.28 (0.23) | 7.99 | 21.29 | 8.15 (0.23) | 7.50 | |
20 | 1 | 3.94 | 4.25 (0.08) | 4.03 | 4.07 | 4.28 (0.08) | 4.18 |
10 | 8.35 | 6.81 (0.11) | 7.59 | 7.55 | 6.55 (0.09) | 7.27 | |
20 | 13.00 | 8.72 (0.11) | 10.69 | 13.85 | 8.63 (0.10) | 11.13 | |
50 | 27.58 | 12.81 (0.14) | 16.05 | 25.91 | 11.88 (0.12) | 16.27 | |
30 | 1 | 3.86 | 4.00 (0.04) | 3.92 | 4.10 | 4.42 (0.04) | 4.53 |
10 | 7.73 | 6.07 (0.05) | 7.49 | 8.11 | 6.73 (0.05) | 8.21 | |
20 | 13.31 | 8.29 (0.07) | 12.11 | 12.35 | 7.90 (0.06) | 11.33 | |
50 | 26.89 | 12.67 (0.08) | 21.09 | 26.70 | 12.75 (0.08) | 21.01 | |
50 | 1 | 4.16 | 3.89 (0.02) | 4.28 | 3.92 | 3.98 (0.02) | 4.35 |
10 | 7.44 | 5.55 (0.02) | 7.58 | 8.70 | 6.91 (0.02) | 9.90 | |
20 | 13.14 | 8.19 (0.03) | 12.98 | 12.78 | 8.21 (0.03) | 13.58 | |
50 | 28.40 | 13.87 (0.05) | 26.65 | 31.14 | 15.29 (0.04) | 28.83 | |
100 | 1 | 4.02 | 3.82 (0.02) | 4.15 | 3.74 | 4.39 (0.01) | 4.74 |
10 | 7.71 | 6.04 (0.02) | 7.93 | 8.03 | 6.64 (0.01) | 8.81 | |
20 | 12.21 | 7.93 (0.02) | 12.14 | 12.77 | 8.32 (0.02) | 13.47 | |
50 | 26.33 | 13.52 (0.03) | 26.38 | 26.98 | 12.84 (0.02) | 27.20 |
z | κ | OLS | W-GME() | GME | OLS | W-GME() | GME |
10 | 1 | 3.98 | 3.41 (0.42) | 2.81 | 4.08 | 3.43 (0.44) | 2.73 |
10 | 8.07 | 5.64 (0.41) | 4.18 | 7.75 | 5.06 (0.45) | 3.67 | |
20 | 12.17 | 6.50 (0.40) | 4.99 | 12.16 | 5.88 (0.43) | 4.69 | |
50 | 29.33 | 7.70 (0.44) | 5.66 | 27.46 | 7.09 (0.44) | 5.55 | |
20 | 1 | 4.03 | 3.54 (0.18) | 3.18 | 3.92 | 3.39 (0.19) | 2.92 |
10 | 8.53 | 5.66 (0.19) | 5.40 | 7.79 | 5.26 (0.20) | 4.83 | |
20 | 12.12 | 7.27 (0.18) | 6.76 | 12.58 | 7.16 (0.21) | 6.08 | |
50 | 28.15 | 11.22 (0.22) | 9.23 | 28.61 | 10.82 (0.22) | 8.29 | |
30 | 1 | 4.21 | 3.62 (0.11) | 3.44 | 4.34 | 3.60 (0.10) | 3.46 |
10 | 8.09 | 5.66 (0.12) | 5.82 | 8.41 | 5.85 (0.12) | 6.05 | |
20 | 13.60 | 7.58 (0.12) | 9.00 | 13.76 | 7.91 (0.13) | 8.76 | |
50 | 26.99 | 11.45 (0.15) | 13.06 | 25.87 | 10.95 (0.15) | 11.57 | |
50 | 1 | 4.11 | 3.46 (0.05) | 3.35 | 3.90 | 3.23 (0.04) | 3.14 |
10 | 8.58 | 5.48 (0.05) | 6.79 | 7.76 | 5.36 (0.05) | 6.01 | |
20 | 13.15 | 6.97 (0.06) | 10.27 | 13.34 | 7.39 (0.06) | 9.89 | |
50 | 27.81 | 11.16 (0.08) | 17.84 | 28.01 | 11.28 (0.08) | 17.47 | |
100 | 1 | 3.90 | 3.02 (0.02) | 3.45 | 4.00 | 2.94 (0.01) | 3.25 |
10 | 7.55 | 4.70 (0.02) | 6.35 | 8.54 | 5.12 (0.02) | 6.65 | |
20 | 13.62 | 6.86 (0.02) | 11.49 | 13.52 | 6.94 (0.03) | 10.81 | |
50 | 28.27 | 11.29 (0.04) | 22.14 | 29.26 | 12.03 (0.04) | 21.93 |
z | κ | OLS | W-GME() | GME | OLS | W-GME() | GME |
10 | 1 | 3.84 | 4.09 (0.47) | 3.61 | 3.36 | 4.71 (0.44) | 4.02 |
10 | 7.01 | 5.68 (0.44) | 4.98 | 6.35 | 6.47 (0.42) | 5.49 | |
20 | 10.65 | 6.41 (0.44) | 5.47 | 10.31 | 7.31 (0.42) | 5.91 | |
50 | 20.90 | 7.03 (0.44) | 6.28 | 20.58 | 7.98 (0.43) | 6.93 | |
20 | 1 | 3.84 | 4.11 (0.21) | 4.54 | 3.70 | 6.91 (0.18) | 6.92 |
10 | 7.46 | 6.07 (0.21) | 6.30 | 7.18 | 8.12 (0.20) | 8.95 | |
20 | 11.02 | 6.83 (0.21) | 7.48 | 11.11 | 9.70 (0.20) | 10.69 | |
50 | 24.31 | 9.98 (0.24) | 9.37 | 24.20 | 11.64 (0.22) | 12.03 | |
30 | 1 | 4.60 | 4.33 (0.21) | 5.39 | 3.59 | 6.23 (0.18) | 6.50 |
10 | 7.83 | 5.91 (0.21) | 7.82 | 7.19 | 9.00 (0.20) | 10.77 | |
20 | 12.03 | 7.73 (0.21) | 9.84 | 11.38 | 9.71 (0.20) | 13.32 | |
50 | 23.92 | 10.75 (0.24) | 13.89 | 25.65 | 15.82 (0.22) | 19.98 | |
50 | 1 | 5.64 | 5.29 (0.05) | 7.15 | 3.78 | 8.32 (0.04) | 8.76 |
10 | 7.86 | 5.74 (0.05) | 9.28 | 7.80 | 12.54 (0.05) | 17.37 | |
20 | 13.41 | 8.18 (0.06) | 13.91 | 11.89 | 9.69 (0.05) | 16.53 | |
50 | 24.07 | 11.05 (0.08) | 21.30 | 25.82 | 20.27 (0.08) | 32.39 | |
100 | 1 | 3.96 | 4.01 (0.02) | 5.19 | 3.80 | 11.75 (0.01) | 12.88 |
10 | 6.92 | 5.33 (0.02) | 8.68 | 8.31 | 14.55 (0.02) | 19.93 | |
20 | 14.25 | 7.78 (0.02) | 17.64 | 11.64 | 17.64 (0.02) | 25.50 | |
50 | 32.09 | 14.24 (0.03) | 33.82 | 28.35 | 41.85 (0.04) | 59.32 |
4.2. Regressions with non-normal errors
5. Concluding Remarks
Notes
- 1.A high condition number indicates a high degree of multicollinearity, and vise versa. A condition number of one signifies that the columns of the matrix in question are orthogonal to each other.
- 2.We searched over an equally-spaced interval , where and γ is set to .
- 3.Recall that the GME estimator implicitly assumes a uniform prior distribution for the error support. Since we use a symmetric error support centered at zero, a uniform distribution over this support leads to a zero disturbance. A wider coefficient support means less restrictive constraints on β and thus the a smaller in absolute value. With the error terms more likely to be close to zero, the need to regulate the entropy of error term distributions is less.
- 4.A non-uniform prior distribution is used for the error support such that the prior distribution is centered at zero.
References
- Skilling, J. The axioms of maximum entropy. In Maximum Entropy and Bayesian Methods in Science and Engineering; Skilling, J., Ed.; Kluwer: Dordrecht, The Netherlands, 1989; pp. 173–187. [Google Scholar]
- Golan, A.; Judge, G.; Miller, D. Maximum Entropy Econometrics: Robust Estimation with Limited Data; Wiley: Chichester, UK, 1996. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Kullback, J. Information Theory and Statistics; John Wiley: New York, NY, USA, 1959. [Google Scholar]
- Levine, R.D. An information theoretic approach to inversion problems. J. Phys. A-Math. Gen. 1980, 13, 91–108. [Google Scholar] [CrossRef]
- Levine, R.D.; Tribus, M. The Maximum Entropy Formalism; MIT Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Shore, J.E.; Johnson, R.W. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inform. Theory 1980, 26, 26–37. [Google Scholar] [CrossRef]
- Jaynes, E.T. Prior information and ambiguity in inverse problems. In Inverse Problems; McLaughlin, D.W., Ed.; SIAM Proceedings, American Mathematical Society: Providence, RI, USA, 1984; pp. 151–166. [Google Scholar]
- Ciszár, I. Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Stat. 1991, 19, 2032–2066. [Google Scholar] [CrossRef]
- Hall, P. Large sample optimality of least squares cross-validation in density estimation. Ann. Stat. 1984, 11, 1156–1174. [Google Scholar]
- Stone, C.J. An asymptotically optimal window selection rule for kernel density estimates. Ann. Stat. 1984, 12, 1285–1297. [Google Scholar] [CrossRef]
- Hall, P.; Marron, J.S. Extent to which least-squares cross-validation minimises integrated square error in nonparametric density estimation. Probab. Theory Rel. 1987, 74, 567–581. [Google Scholar] [CrossRef]
© 2009 by the author; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0/.
Share and Cite
Wu, X. A Weighted Generalized Maximum Entropy Estimator with a Data-driven Weight. Entropy 2009, 11, 917-930. https://doi.org/10.3390/e11040917
Wu X. A Weighted Generalized Maximum Entropy Estimator with a Data-driven Weight. Entropy. 2009; 11(4):917-930. https://doi.org/10.3390/e11040917
Chicago/Turabian StyleWu, Ximing. 2009. "A Weighted Generalized Maximum Entropy Estimator with a Data-driven Weight" Entropy 11, no. 4: 917-930. https://doi.org/10.3390/e11040917
APA StyleWu, X. (2009). A Weighted Generalized Maximum Entropy Estimator with a Data-driven Weight. Entropy, 11(4), 917-930. https://doi.org/10.3390/e11040917