Plasmon-Enhanced Sunlight Harvesting in Thin-Film Solar Cell by Randomly Distributed Nanoparticle Array
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernardes, S.; Lameirinhas, R.; Torres, J.; Fernandes, C. Characterization and Design of Photovoltaic Solar Cells That Absorb Ultraviolet”, Visible and Infrared Light. Nanomaterials 2021, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Verma, S.S. Enhanced efficiency of thin film GaAs solar cells with plasmonic metal nanoparticles. Energy Sources 2017, 40, 155–162. [Google Scholar] [CrossRef]
- Muhammad, M.H.; Hameed, M.F.O.; Obayya, S.S.A. Broadband absorption enhancement in periodic structure plasmonic solar cell. Opt. Quantum Electron. 2015, 47, 1487–1494. [Google Scholar] [CrossRef]
- Mahros, A.M.; Tharwat, M.M.; Ashry, I. Exploring the impact of rotating rectangular plasmonic nano-hole arrays on the transmission spectra and its application as a plasmonic sensor. J. Eur. Opt. Soc. Rapid Public 2015, 10, 6. [Google Scholar] [CrossRef]
- Kulesza, G.; Panek, P.; Zieba, P. Time efficient texturization of multicrystalline silicon in the HF/HNO3 solutions and its effect on optoelectronic parameters of solar cells. Arch. Civ. Mech. Eng. 2014, 14, 595–601. [Google Scholar] [CrossRef]
- Munday, J.; Atwater, H. Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. Nano Lett. 2011, 11, 2195–2201. [Google Scholar] [CrossRef] [PubMed]
- Arora, N.; Hauser, J. Antireflection layers for GaAs solar cells. J. Appl. Phys. 1982, 53, 8839–8846. [Google Scholar] [CrossRef]
- Kalchmair, S.; Detz, H.; Cole, G.; Andrews, A.; Klang, P.; Nobile, M.; Gansch, R.; Ostermaier, C.; Schrenk, W.; Strasser, G. Photonic crystal slab quantum well infrared photodetector. Appl. Phys. Lett. 2011, 98, 011105. [Google Scholar] [CrossRef]
- Tharwat, M.M.; Mahros, A.M. Enhanced plasmonic absorber based on a hexagonal annular nano-array and impact of imperfection. Mater. Express 2016, 6, 229–236. [Google Scholar] [CrossRef]
- Singh, G.; Verma, S. Plasmon enhanced light trapping in thin film GaAs solar cells by Al nanoparticle array. Phys. Lett. A 2019, 383, 1526–1530. [Google Scholar] [CrossRef]
- Mahros, A.M.; Tharwat, M.M. Investigating the fabrication imperfection of plasmonic nano-hole arrays and its effect on the optical transmission spectra. J. Nanomater. 2015, 2015, 178583. [Google Scholar] [CrossRef]
- Ashry, I.; Elrashidi, A.; Tharwat, M.M.; Xu, Y.; Mahros, A.M. Investigating the Optical Transmission Spectra of Plasmonic Spherical Nano-Hole Arrays. Plasmonics 2014, 10, 511–517. [Google Scholar] [CrossRef]
- Mahros, A.M.; Tharwat, M.M.; Elrashidi, A.M. Exploring the Impact of Nano-Particle Shape on the Performance of Plasmonic based Fiber Optics Sensors. Plasmonics 2017, 12, 563–570. [Google Scholar] [CrossRef]
- Guo, C.; Sun, T.; Cao, F.; Liu, Q.; Ren, Z. Metallic nanostructures for light trapping in energy-harvesting devices. Light Sci. Appl. 2014, 3, e161. [Google Scholar]
- Rakib, K.; Sarker, M.; Islam, M.; Alam, M. Coupling characteristics of surface plasmons in coupled elliptical nanowires. OSA Contin. 2018, 1, 1414–1428. [Google Scholar] [CrossRef]
- Lai, Y.-C.; Chen, C.-Y.; Hung, Y.-T. Extending Absorption Edge through the Hybrid Resonator-Based Absorber with Wideband and Near-Perfect Absorption in Visible Region. Materials 2020, 13, 1470. [Google Scholar] [CrossRef]
- Hoa, N.; Lam, P.; Tung, P.; Tuan, T.; Nguyen, H. Numerical study of a wide-angle and polarization-insensitive ultra-broadband metamaterial absorber in visible and near-infrared region. IEEE Photonic 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Jeong, N.C.; Prasittichai, C.; Hupp, J.T. Photocurrent Enhancement by Surface Plasmon Resonance of Silver Nanoparticles in Highly Porous Dye-Sensitized Solar Cells. Langmuir 2011, 27, 14609–14614. [Google Scholar] [CrossRef]
- Atwater, H.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef]
- Tian, Y.; Tatsuma, T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 2005, 127, 7632–7637. [Google Scholar] [CrossRef]
- Kawawaki, T.; Wang, H.; Kubo, T.; Saito, K.; Nakazaki, J.; Segawa, H.; Tatsuma, T. Efficiency Enhancement of PbS Quantum Dot/ZnO Nanowire Bulk-Heterojunction Solar Cells by Plasmonic Silver Nanocubes. ACS Nano 2015, 9, 4165–4172. [Google Scholar] [CrossRef] [PubMed]
- Deka, N.; Islam, M.; Sarswat, P.; Kumar, G. Enhancing solar cell efficiency with plasmonic behavior of double metal nanoparticle system. Vacuum 2018, 152, 285–290. [Google Scholar] [CrossRef]
- Duan, Z.; Li, M.; Mwenya, T.; Song, D. Morphology Optimization of Silver Nanoparticles Used to Improve the Light Absorption in Thin-Film Silicon Solar Cells. Plasmonics 2017, 13, 555–561. [Google Scholar] [CrossRef]
- Shi, B.; Wang, W.; Yu, X.; Yang, L.; Xu, Y. Enhancement of optical absorption in silicon thin-film solar cells with metal nanoparticles. Opt. Eng. 2017, 56, 57105. [Google Scholar] [CrossRef]
- Gérard, D.; Gray, S.K. Aluminum plasmonics. J. Phys. D Appl. Phys. 2015, 48, 184001. [Google Scholar]
- Hylton, N.; Li, X.; Giannini, V.; Lee, K.; Daukes, N.; Loo, J.; Vercruysse, D.; van Dorpe, P.; Sodabanlu, H.; Sugiyama, M.; et al. Loss mitigation in plasmonic solar cells: Aluminum nanoparticles for broadband photocurrent enhancements in GaAs photodiodes. Sci. Rep. 2013, 3, 2874. [Google Scholar] [CrossRef]
- Villesen, T.; Uhrenfeldt, C.; Johansen, B.; Hansen, J.; Ulriksen, H.; Larsen, A. Aluminum nanoparticles for plasmon-improved coupling of light into silicon. Nanotechnology 2012, 23, 085202. [Google Scholar] [CrossRef]
- Mahros, A.M.; Ashry, I. Fiber-based simultaneous mode and wavelength demultiplexer. Appl. Opt. 2018, 57, 582–587. [Google Scholar] [CrossRef]
- Palaz, S.; Simsek, S.; Mamedov, A.M.; Ozbay, E. Photonic band gap of multiferroic-dielectric materials in the IR region: FDTD method. Ferroelectrics 2019, 539, 50–54. [Google Scholar] [CrossRef]
- Tharwat, M.M.; Ashry, I.; Elrashidi, A.; Mahros, A.M. A study of green wavelength-division multiplexed optical communication systems using cascaded fiber bragg grating. Opt. Fiber Technol. 2014, 20, 467–472. [Google Scholar] [CrossRef]
- Prabu, K.; Nasre, D. Design and Analysis of a Novel Optical Circulator Based on Photonic Crystal for Photonic Integrated Circuit Applications. Plasmonics 2019, 14, 1261–1267. [Google Scholar]
- Mahros, A.M.; Tharwat, M.M.; Ashry, I. Investigating the characteristics of TM-pass/TE-stop polarizer designed using plasmonic nanostructures. Appl. Opt. 2015, 54, 4464–4470. [Google Scholar] [CrossRef]
- Zhang, Z.; Chu, F.; Guo, Z.; Fan, J.; Li, G.; Cheng, W. Design and Optimization of Surface Plasmon Resonance Sensor Based on Polymer-Tipped Optical Fiber. J. Light. Technol. 2019, 37, 2820–2827. [Google Scholar] [CrossRef]
- OptiFDTD. Available online: http://www.optiwave.com/ (accessed on 10 March 2021).
- Tanabe, K. A Simple Optical Model Well Explains Plasmonic-Nanoparticle-Enhanced Spectral Photocurrent in Optically Thin Solar Cells. Nanoscale Res. Lett. 2016, 11, 236. [Google Scholar] [CrossRef] [PubMed]
- Nakane, A.; Tampo, H.; Tamakoshi, M.; Fujimoto, S.; Kim, K.M.; Kim, S.; Shibata, H.; Niki, S.; Fujiwara, H. Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis. J. Appl. Phys. 2016, 120, 064505. [Google Scholar] [CrossRef]
- Liu, J.; He, H.; Xiao, D.; Yin, S.; Ji, W.; Jiang, S.; Luo, D.; Wang, B.; Liu, Y. Recent Advances of Plasmonic Nanoparticles and their Applications. Mater. 2018, 11, 1833. [Google Scholar] [CrossRef] [PubMed]
- Palik, E. Handbook of Optical Constants of Solids; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- Chen, M.; He, Y.; Wang, X.; Hu, Y. Numerically investigating the optical properties of plasmonic metallic nanoparticles for effective solar absorption and heating. Sol. Energy 2018, 161, 17–24. [Google Scholar] [CrossRef]
- Magnusson, R.; Shin, D. Diffractive Optical Components-Encyclopedia of Physical Science and Technology, 3rd ed.; Academic Press: New York, NY, USA, 2003. [Google Scholar]
- Raja, W.; Bozzola, A.; Zilio, P.; Miele, E.; Panaro, S.; Wang, H.; Toma, A.; Alabastri, A.; De Angelis, F.; Zaccaria, R.P. Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells. Sci. Rep. 2016, 6, 24539. [Google Scholar] [CrossRef] [PubMed]
- Kasani, S.; Kathrine, C.; Wu, N. A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications. Nanophotonics 2019, 8, 2065–2089. [Google Scholar] [CrossRef]
- Aguilar, M.; Manjarrez, H.; Gómez, A. Simple Fabrication and Characterization of an Aluminum Nanoparticle Monolayer with Well-Defined Plasmonic Resonances in the Far Ultraviolet. Metals 2018, 8, 67. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tharwat, M.M.; Almalki, A.; Mahros, A.M. Plasmon-Enhanced Sunlight Harvesting in Thin-Film Solar Cell by Randomly Distributed Nanoparticle Array. Materials 2021, 14, 1380. https://doi.org/10.3390/ma14061380
Tharwat MM, Almalki A, Mahros AM. Plasmon-Enhanced Sunlight Harvesting in Thin-Film Solar Cell by Randomly Distributed Nanoparticle Array. Materials. 2021; 14(6):1380. https://doi.org/10.3390/ma14061380
Chicago/Turabian StyleTharwat, Marwa M., Ashwag Almalki, and Amr M. Mahros. 2021. "Plasmon-Enhanced Sunlight Harvesting in Thin-Film Solar Cell by Randomly Distributed Nanoparticle Array" Materials 14, no. 6: 1380. https://doi.org/10.3390/ma14061380
APA StyleTharwat, M. M., Almalki, A., & Mahros, A. M. (2021). Plasmon-Enhanced Sunlight Harvesting in Thin-Film Solar Cell by Randomly Distributed Nanoparticle Array. Materials, 14(6), 1380. https://doi.org/10.3390/ma14061380