How Can Users Be Confident About Self-Disclosure in Mobile Payment? From Institutional Mechanism Perspective
Abstract
1. Introduction
2. Theoretical Background
2.1. Mobile Payment
2.2. Self-Disclosure
2.3. Institutional Mechanisms
3. Research Model and Hypotheses
3.1. Trust-Risk Appraisal and Self-Disclosure Behavior
3.2. General Structural Assurance and Trust-Risk Appraisal
3.3. General Institutional Structure and Trust-Risk Appraisal
3.4. Local Structural Assurance and Trust-Risk Appraisal
3.5. Local Institutional Structure and Trust-Risk Appraisal
4. Research Method
4.1. Research Setting
4.2. Data Collection
4.3. Measurement Development
5. Data Analysis and Results
5.1. Measurement Model
5.2. Structural Model
6. Discussion and Conclusions
6.1. Theoretical Implications
6.2. Practical Implications
6.3. Limitations and Future Research
6.4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- An, S.; Cheung, C.F.; Willoughby, K.W. A Gamification Approach for Enhancing Older Adults’ Technology Adoption and Knowledge Transfer: A Case Study in Mobile Payments Technology. Technol. Forecast. Soc. Change 2024, 205, 123456. [Google Scholar] [CrossRef]
- Hew, J.-J.; Lee, V.-H.; Leong, L.-Y. Deciphering the Resistance Behaviours towards Mobile Commerce Applications: A Mobile Commerce Applications Resistance Theory (MOCART). Comput. Hum. Behav. 2024, 151, 108033. [Google Scholar] [CrossRef]
- Chen, R.; Zolbanin, H.M.; Gentina, E. Pseudo-Community Trust and Member Self-Disclosure: An Empirical Study. Inf. Manag. 2024, 61, 104001. [Google Scholar] [CrossRef]
- Wu, D.; Min, C.; Li, Z.; Wang, Y. Vigilance and Habituation: Polymorphic Experience Effects in Internet Users’ Privacy Disclosure Decisions. Decis. Support Syst. 2023, 170, 113961. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Khansa, L.; Kim, S. Actual Private Information Disclosure on Online Social Networking Sites: A Reflective-Impulsive Model. JAIS 2024, 25, 1533–1562. [Google Scholar] [CrossRef]
- Chauhan, V. Understanding Users’ Protective Behavior and Its Suppressor Effect on the Perceived Risk in M-Wallet/Banking Use: An Indian Urban-Rural Comparison. Technol. Forecast. Soc. Change 2024, 201, 123255. [Google Scholar] [CrossRef]
- Alashoor, T.; Keil, M.; Smith, H.J.; McConnell, A.R. Too Tired and in Too Good of a Mood to Worry About Privacy: Explaining the Privacy Paradox Through the Lens of Effort Level in Information Processing. Inf. Syst. Res. 2023, 34, 1415–1436. [Google Scholar] [CrossRef]
- Krasnova, H.; Spiekermann, S.; Koroleva, K.; Hildebrand, T. Online Social Networks: Why We Disclose. J. Inf. Technol. 2010, 25, 109–125. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, F.; Yu, L.; Wang, J.F.; Lowry, P.B. A Dual-Process Model to Explain Self-Disclosure on Online Social Networking Sites: Examining the Moderating Effect of Enjoyment. INTR 2024, 34, 1456–1487. [Google Scholar] [CrossRef]
- Vaghefi, M.S.; Nazareth, D.L.; Nerur, S.P.; Chen, K.-Y. Self-Disclosure in Online Social Networks: An Empirical Study of Location-Based Check-Ins and Impression Management. Inf. Manag. 2024, 61, 104017. [Google Scholar] [CrossRef]
- Gong, X.; Cheung, C.M.K.; Liu, S.; Zhang, K.Z.K.; Lee, M.K.O. Battles of Mobile Payment Networks: The Impacts of Network Structures, Technology Complementarities and Institutional Mechanisms on Consumer Loyalty. Inf. Syst. J. 2022, 32, 696–728. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, K.Z.K.; Chen, C.; Cheung, C.M.K.; Lee, M.K.O. What Drives Trust Transfer from Web to Mobile Payment Services? The Dual Effects of Perceived Entitativity. Inf. Manag. 2020, 57, 103250. [Google Scholar] [CrossRef]
- Johnson, V.L.; Kiser, A.; Washington, R.; Torres, R. Limitations to the Rapid Adoption of M-Payment Services: Understanding the Impact of Privacy Risk on M-Payment Services. Comput. Hum. Behav. 2018, 79, 111–122. [Google Scholar] [CrossRef]
- Xu, Y.; Ghose, A.; Xiao, B. Mobile Payment Adoption: An Empirical Investigation of Alipay. Inf. Syst. Res. 2024, 35, 807–828. [Google Scholar] [CrossRef]
- Al-Natour, S.; Benbasat, I.; Cenfetelli, R. Designing Online Virtual Advisors to Encourage Customer Self-Disclosure: A Theoretical Model and an Empirical Test. J. Manag. Inf. Syst. 2021, 38, 798–827. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, N.; Shen, X.-L. Calculus Interdependency, Personality Contingency, and Causal Asymmetry: Toward a Configurational Privacy Calculus Model of Information Disclosure. Inf. Manag. 2021, 58, 103556. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, K.Z.K.; Chen, C.; Cheung, C.M.K.; Lee, M.K.O. What Drives Self-Disclosure in Mobile Payment Applications? The Effect of Privacy Assurance Approaches, Network Externality, and Technology Complementarity. ITP 2019, 33, 1174–1213. [Google Scholar] [CrossRef]
- Kordzadeh, N.; Warren, J. Communicating Personal Health Information in Virtual Health Communities: An Integration of Privacy Calculus Model and Affective Commitment. JAIS 2017, 18, 45–81. [Google Scholar] [CrossRef]
- Bansal, G.; “Mariam” Zahedi, F.; Gefen, D. The Impact of Personal Dispositions on Information Sensitivity, Privacy Concern and Trust in Disclosing Health Information Online. Decis. Support Syst. 2010, 49, 138–150. [Google Scholar] [CrossRef]
- Jiang, Z.; Heng, C.S.; Choi, B.C.F. Research Note—Privacy Concerns and Privacy-Protective Behavior in Synchronous Online Social Interactions. Inf. Syst. Res. 2013, 24, 579–595. [Google Scholar] [CrossRef]
- Wang, J.; Dong, M.; Yang, Z.; Li, Y. Passing the Torch: How Parental Privacy Concerns Affect Adolescent Self-Disclosure on Social Networking Sites. MIS Q. 2023, 47, 1585–1614. [Google Scholar] [CrossRef]
- Yan, R.; Gong, X.; Xu, H.; Yang, Q. Seeing the Forest and the Trees: A Meta-Analysis of the Antecedents to Online Self-Disclosure. INTR 2024. [Google Scholar] [CrossRef]
- Bansal, G.; Mariam Zahedi, F.; Gefen, D. The Role of Privacy Assurance Mechanisms in Building Trust and the Moderating Role of Privacy Concern. Eur. J. Inf. Syst. 2015, 24, 624–644. [Google Scholar] [CrossRef]
- Pavlou, P.A.; Gefen, D. Building Effective Online Marketplaces with Institution-Based Trust. Inf. Syst. Res. 2004, 15, 37–59. [Google Scholar] [CrossRef]
- Fang, Y.; Qureshi, I.; Sun, H.; McCole, P.; Ramsey, E.; Lim, K.H. Trust, Satisfaction, and Online Repurchase Intention: The Moderating Role of Perceived Effectiveness of E-Commerce Institutional Mechanisms. MIS Q. 2014, 38, 407–427. [Google Scholar] [CrossRef]
- Zhou, T. Understanding Users’ Initial Trust in Mobile Banking: An Elaboration Likelihood Perspective. Comput. Hum. Behav. 2012, 28, 1518–1525. [Google Scholar] [CrossRef]
- Gefen, D.; Pavlou, P.A. The Boundaries of Trust and Risk: The Quadratic Moderating Role of Institutional Structures. Inf. Syst. Res. 2012, 23, 940–959. [Google Scholar] [CrossRef]
- Montazemi, A.R.; Qahri-Saremi, H. Factors Affecting Adoption of Online Banking: A Meta-Analytic Structural Equation Modeling Study. Inf. Manag. 2015, 52, 210–226. [Google Scholar] [CrossRef]
- Luo, X.; Li, H.; Zhang, J.; Shim, J.P. Examining Multi-Dimensional Trust and Multi-Faceted Risk in Initial Acceptance of Emerging Technologies: An Empirical Study of Mobile Banking Services. Decis. Support Syst. 2010, 49, 222–234. [Google Scholar] [CrossRef]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in Online Shopping: An Integrated Model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Konuk, F.A. The Influence of Perceived Food Quality, Price Fairness, Perceived Value and Satisfaction on Customers’ Revisit and Word-of-Mouth Intentions towards Organic Food Restaurants. J. Retail. Consum. Serv. 2019, 50, 103–110. [Google Scholar] [CrossRef]
- Yang, K.; Kim, H.M.; Tanoff, L. Signaling Trust: Cues from Instagram Posts. Electron. Commer. Res. Appl. 2020, 43, 100998. [Google Scholar] [CrossRef]
- Liu, H.; Chou, H. The Impact of Regulatory Focus on the Inaction Inertia Effect. Psychol. Mark. 2025, 42, 1779–1794. [Google Scholar] [CrossRef]
- Wakefield, R. The Influence of User Affect in Online Information Disclosure. J. Strateg. Inf. Syst. 2013, 22, 157–174. [Google Scholar] [CrossRef]
- Cichy, P.; Salge, T.O.; Kohli, R. Privacy Concerns and Data Sharing in the Internet of Things: Mixed Methods Evidence from Connected Cars. MISQ 2021, 45, 1863–1892. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, L.; Brown, S.A.; Zhao, T. Understanding Users’ Trust Transfer Mechanism in a Blockchain-Enabled Platform: A Mixed Methods Study. Decis. Support Syst. 2022, 155, 113716. [Google Scholar] [CrossRef]
- Sha, W. Types of Structural Assurance and Their Relationships with Trusting Intentions in Business-to-Consumer e-Commerce. Electron Mark. 2009, 19, 43–54. [Google Scholar] [CrossRef]
- Dahlberg, T.; Guo, J.; Ondrus, J. A Critical Review of Mobile Payment Research. Electron. Commer. Res. Appl. 2015, 14, 265–284. [Google Scholar] [CrossRef]
- Mousavizadeh, M.; Kim, D.J.; Chen, R. Effects of Assurance Mechanisms and Consumer Concerns on Online Purchase Decisions: An Empirical Study. Decis. Support Syst. 2016, 92, 79–90. [Google Scholar] [CrossRef]
- Srivastava, S.C.; Chandra, S. Social Presence in Virtual World Collaboration: An Uncertainty Reduction Perspective Using a Mixed Methods Approach. MIS Q. 2018, 42, 779–803. [Google Scholar] [CrossRef]
- Pan, Y.; Wan, Y.; Fan, J.; Liu, B.; Archer, N. Raising the Cohesion and Vitality of Online Communities by Reducing Privacy Concerns. Int. J. Electron. Commer. 2017, 21, 151–183. [Google Scholar] [CrossRef]
- Oliveira, T.; Faria, M.; Thomas, M.A.; Popovič, A. Extending the Understanding of Mobile Banking Adoption: When UTAUT Meets TTF and ITM. Int. J. Inf. Manag. 2014, 34, 689–703. [Google Scholar] [CrossRef]
- Kim, S.S. The Integrative Framework of Technology Use: An Extension and Test. MIS Q. 2009, 33, 513. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common Method Biases in Behavioral Research A Critical Review of the Literature and Recommended Remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Malhotra, N.K.; Kim, S.S.; Patil, A. Common Method Variance in IS Research: A Comparison of Alternative Approaches and a Reanalysis of Past Research. Manag. Sci. 2006, 52, 1865–1883. [Google Scholar] [CrossRef]
- Richardson, H.A.; Simmering, M.J.; Sturman, M.C. A Tale of Three Perspectives: Examining Post Hoc Statistical Techniques for Detection and Correction of Common Method Variance. Organ. Res. Methods 2009, 12, 762–800. [Google Scholar] [CrossRef]
- Sutanto, J.; Palme, E.; Tan, C.-H.; Phang, C.W. Addressing the Personalization-Privacy Paradox: An Empirical Assessment from a Field Experiment on Smartphone Users. MIS Q. 2013, 37, 1141–1164. [Google Scholar] [CrossRef]
- Anderson, C.L.; Agarwal, R. The Digitization of Healthcare: Boundary Risks, Emotion, and Consumer Willingness to Disclose Personal Health Information. Inf. Syst. Res. 2011, 22, 469–490. [Google Scholar] [CrossRef]
- Dinev, T.; Xu, H.; Smith, J.H.; Hart, P. Information Privacy and Correlates: An Empirical Attempt to Bridge and Distinguish Privacy-Related Concepts. Eur. J. Inf. Syst. 2013, 22, 295–316. [Google Scholar] [CrossRef]
- Chin, W.W.; Marcolin, B.L.; Newsted, P.R. A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study. Inf. Syst. Res. 2003, 14, 189–217. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Thousand Oaks, CA, USA, 2016; ISBN 978-4522-1744-4. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Loss Aversion in Riskless Choice: A Reference-Dependent Model. Q. J. Econ. 1991, 106, 1039–1061. [Google Scholar] [CrossRef]
- Williams, L.E.; Stein, R.; Galguera, L. The Distinct Affective Consequences of Psychological Distance and Construal Level. J. Consum. Res. 2014, 40, 1123–1138. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F.; Kalinic, Z.; Muñoz-Leiva, F.; Higueras-Castillo, E. Biometric M-Payment Systems: A Multi-Analytical Approach to Determining Use Intention. Inf. Manag. 2024, 61, 103907. [Google Scholar] [CrossRef]
- Mishra, V.; Walsh, I.; Srivastava, A. Merchants’ Adoption of Mobile Payment in Emerging Economies: The Case of Unorganised Retailers in India. Eur. J. Inf. Syst. 2022, 31, 74–90. [Google Scholar] [CrossRef]



| Construct | Item | Loading | Mean | VIF |
|---|---|---|---|---|
| General structural assurance (GSA) AVE = 0.64; CR = 0.88; CA = 0.81 | GSA 1 | 0.82 | 5.86 | 1.80 |
| GSA 2 | 0.78 | 5.74 | 1.53 | |
| GSA 3 | 0.80 | 5.86 | 1.69 | |
| GSA 4 | 0.80 | 5.87 | 1.72 | |
| General institutional structure (GIS) AVE = 0.57; CR = 0.84; CA = 0.75 | GIS 1 | 0.78 | 5.43 | 1.53 |
| GIS 2 | 0.81 | 5.31 | 1.53 | |
| GIS 3 | 0.77 | 5.06 | 1.50 | |
| GIS 4 | 0.65 | 5.61 | 1.23 | |
| Local structural assurance (LSA) AVE = 0.62; CR = 0.87; CA = 0.80 | LSA 1 | 0.82 | 5.81 | 1.68 |
| LSA 2 | 0.79 | 5.80 | 1.62 | |
| LSA 3 | 0.77 | 5.74 | 1.52 | |
| LSA 4 | 0.77 | 5.91 | 1.61 | |
| Local institutional structure (LIS) AVE = 0.63; CR = 0.87; CA = 0.80 | LIS 1 | 0.71 | 5.24 | 1.43 |
| LIS 2 | 0.80 | 5.17 | 1.54 | |
| LIS 3 | 0.81 | 5.21 | 1.88 | |
| LIS 4 | 0.84 | 5.26 | 1.99 | |
| Trust (TRU) AVE = 0.63; CR = 0.87; CA = 0.81 | TRU 1 | 0.82 | 5.68 | 1.72 |
| TRU 2 | 0.73 | 5.61 | 1.45 | |
| TRU 3 | 0.81 | 5.31 | 1.7 | |
| TRU 4 | 0.81 | 5.53 | 1.75 | |
| Privacy concern (PC) AVE = 0.80; CR = 0.94; CA = 0.92 | PC 1 | 0.86 | 4.46 | 2.24 |
| PC 2 | 0.92 | 4.20 | 3.88 | |
| PC 3 | 0.91 | 4.13 | 3.47 | |
| PC 4 | 0.89 | 4.43 | 2.98 | |
| Self-disclosure (SD) AVE = 0.79; CR = 0.92; CA = 0.87 | SD 1 | 0.89 | 4.90 | 2.15 |
| SD 2 | 0.89 | 5.15 | 2.27 | |
| SD 3 | 0.89 | 5.14 | 2.28 |
| Construct | Item | GSA | GIS | LSA | LIS | TRU | PC | SD |
|---|---|---|---|---|---|---|---|---|
| General institutional structure (GIS) | GSA 1 | 0.82 | 0.46 | 0.53 | 0.31 | 0.46 | −0.20 | 0.29 |
| GSA 2 | 0.78 | 0.52 | 0.57 | 0.34 | 0.47 | −0.23 | 0.28 | |
| GSA 3 | 0.80 | 0.47 | 0.52 | 0.32 | 0.44 | −0.27 | 0.30 | |
| GSA 4 | 0.80 | 0.46 | 0.58 | 0.31 | 0.44 | −0.18 | 0.25 | |
| General structural assurance (GSA) | GIS 1 | 0.50 | 0.78 | 0.47 | 0.45 | 0.49 | −0.24 | 0.34 |
| GIS 2 | 0.54 | 0.81 | 0.51 | 0.50 | 0.56 | −0.29 | 0.37 | |
| GIS 3 | 0.40 | 0.77 | 0.35 | 0.53 | 0.46 | −0.27 | 0.31 | |
| GIS 4 | 0.35 | 0.65 | 0.43 | 0.39 | 0.43 | −0.20 | 0.27 | |
| Local institutional structure (LIS) | LSA 1 | 0.60 | 0.50 | 0.82 | 0.44 | 0.57 | −0.27 | 0.36 |
| LSA 2 | 0.53 | 0.46 | 0.79 | 0.38 | 0.54 | −0.24 | 0.26 | |
| LSA 3 | 0.53 | 0.48 | 0.77 | 0.39 | 0.50 | −0.31 | 0.27 | |
| LSA 4 | 0.50 | 0.40 | 0.77 | 0.34 | 0.48 | −0.22 | 0.28 | |
| Local structure assurance (LSA) | LIS 1 | 0.28 | 0.45 | 0.35 | 0.71 | 0.46 | −0.17 | 0.25 |
| LIS 2 | 0.33 | 0.54 | 0.41 | 0.80 | 0.61 | −0.31 | 0.32 | |
| LIS 3 | 0.30 | 0.48 | 0.38 | 0.81 | 0.54 | −0.24 | 0.32 | |
| LIS 4 | 0.35 | 0.50 | 0.42 | 0.84 | 0.57 | −0.24 | 0.36 | |
| Trust (TRU) | TRU 1 | 0.51 | 0.53 | 0.60 | 0.58 | 0.82 | −0.32 | 0.38 |
| TRU 2 | 0.46 | 0.46 | 0.53 | 0.44 | 0.73 | −0.23 | 0.27 | |
| TRU 3 | 0.41 | 0.53 | 0.48 | 0.60 | 0.81 | −0.32 | 0.40 | |
| TRU 4 | 0.42 | 0.53 | 0.49 | 0.58 | 0.81 | −0.24 | 0.34 | |
| Privacy concern (PC) | PC 1 | −0.22 | −0.30 | −0.26 | −0.26 | −0.31 | 0.86 | −0.34 |
| PC 2 | −0.26 | −0.30 | −0.30 | −0.28 | −0.31 | 0.92 | −0.32 | |
| PC 3 | −0.26 | −0.29 | −0.32 | −0.27 | −0.32 | 0.91 | −0.30 | |
| PC 4 | −0.24 | −0.30 | −0.29 | −0.29 | −0.32 | 0.89 | −0.27 | |
| Self-disclosure (SD) | SD 1 | 0.33 | 0.42 | 0.34 | 0.40 | 0.42 | −0.30 | 0.89 |
| SD 2 | 0.30 | 0.36 | 0.31 | 0.33 | 0.36 | −0.33 | 0.89 | |
| SD 3 | 0.30 | 0.36 | 0.33 | 0.32 | 0.38 | −0.29 | 0.89 |
| GSA | GIS | LSA | LIS | TRU | PC | SD | |
|---|---|---|---|---|---|---|---|
| General structural assurance (GSA) | 0.80 | ||||||
| General institutional structure (GIS) | 0.59 | 0.75 | |||||
| Local structural assurance (LSA) | 0.68 | 0.57 | 0.79 | ||||
| Local institutional structure (LIS) | 0.40 | 0.62 | 0.49 | 0.79 | |||
| Trust (TRU) | 0.57 | 0.64 | 0.66 | 0.69 | 0.80 | ||
| Privacy concern (PC) | −0.27 | −0.33 | −0.33 | −0.30 | −0.35 | 0.90 | |
| Self-disclosure (SD) | 0.35 | 0.43 | 0.37 | 0.39 | 0.44 | −0.34 | 0.89 |
| β | p | 95% CI | |
|---|---|---|---|
| General structural assurance → Trust | 0.108 | 0.044 | [0.011, 0.221] |
| General structural assurance → Privacy concern | −0.025 | 0.578 | [−0.116, 0.063] |
| General institutional structure → Trust | 0.155 | 0.001 | [0.068, 0.247] |
| General institutional structure → Privacy concern | −0.142 | 0.007 | [−0.244, −0.037] |
| Local structural assurance → Trust | 0.297 | <0.001 | [0.180, 0.410] |
| Local structural assurance → Privacy concern | −0.166 | 0.001 | [−0.263, −0.070] |
| Local institutional structure → Trust | 0.407 | <0.001 | [0.336, 0.476] |
| Local institutional structure → Privacy concern | −0.126 | 0.007 | [−0.217, −0.032] |
| Trust → Self-disclosure | 0.342 | <0.001 | [0.261, 0.419] |
| Privacy concern → Self-disclosure | −0.181 | <0.001 | [−0.258, −0.107] |
| β | p | 95% CI | Proportion of Mediation | ||
|---|---|---|---|---|---|
| Total effect | General structural assurance → Self-disclosure | 0.042 | 0.051 | [0.004, 0.089] | 100% |
| Indirect effect | General structural assurance → Trust → Self-disclosure | 0.037 | 0.054 | [0.004, 0.081] | 88% |
| General structural assurance → Privacy concern → Self-disclosure | 0.005 | 0.583 | [−0.011, 0.023] | Non-significant | |
| Total effect | General institutional structure → Self-disclosure | 0.079 | <0.001 | [0.042, 0.121] | 100% |
| Indirect effect | General institutional structure → Trust → Self-disclosure | 0.053 | 0.002 | [0.023, 0.091] | 67% |
| General institutional structure → Privacy concern → Self-disclosure | 0.026 | 0.033 | [0.006, 0.054] | 33% | |
| Total effect | Local structural assurance → Self-disclosure | 0.132 | <0.001 | [0.086, 0.182] | 100% |
| Indirect effect | Local structural assurance → Trust → Self-disclosure | 0.102 | <0.001 | [0.059, 0.151] | 77% |
| Local structural assurance → Privacy concern → Self-disclosure | 0.030 | 0.008 | [0.012, 0.056] | 23% | |
| Total effect | Local institutional structure → Self-disclosure | 0.162 | <0.001 | [0.123, 0.205] | 100% |
| Indirect effect | Local institutional structure → Trust → Self-disclosure | 0.139 | <0.001 | [0.103, 0.181] | 86% |
| Local institutional structure → Privacy concern → Self-disclosure | 0.023 | 0.022 | [0.006, 0.045] | 14% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, H.; Li, J. How Can Users Be Confident About Self-Disclosure in Mobile Payment? From Institutional Mechanism Perspective. J. Theor. Appl. Electron. Commer. Res. 2026, 21, 10. https://doi.org/10.3390/jtaer21010010
Xu H, Li J. How Can Users Be Confident About Self-Disclosure in Mobile Payment? From Institutional Mechanism Perspective. Journal of Theoretical and Applied Electronic Commerce Research. 2026; 21(1):10. https://doi.org/10.3390/jtaer21010010
Chicago/Turabian StyleXu, Haiqin, and Jian Li. 2026. "How Can Users Be Confident About Self-Disclosure in Mobile Payment? From Institutional Mechanism Perspective" Journal of Theoretical and Applied Electronic Commerce Research 21, no. 1: 10. https://doi.org/10.3390/jtaer21010010
APA StyleXu, H., & Li, J. (2026). How Can Users Be Confident About Self-Disclosure in Mobile Payment? From Institutional Mechanism Perspective. Journal of Theoretical and Applied Electronic Commerce Research, 21(1), 10. https://doi.org/10.3390/jtaer21010010

