How AI Overview of Customer Reviews Influences Consumer Perceptions in E-Commerce?
Abstract
1. Introduction
2. Literature Review and Hypothesis Development
2.1. Consumers’ Attitude Toward AI
2.2. AI Overview and Perceived Usefulness of Customer Reviews Section
2.3. The Mediating Role of Perceived Diagnosticity
2.4. The Moderating Role of Need for Cognition
3. Study 1: Main Effect
3.1. Data Sources and Stimuli
3.2. Procedure and Measures
3.3. Manipulation Check
3.4. Main Effect Test
4. Study 2: The Mediating Role of Perceived Diagnosticity
4.1. Data Sources and Stimuli
4.2. Procedure and Measures
4.3. Manipulation Check
4.4. Main Effect Test
4.5. Mediation Effect Analysis
5. Study 3: The Moderating Role of the Need for Cognition
5.1. Data Sources and Stimuli
5.2. Procedure and Measures
5.3. Manipulation Check
5.4. Main Effect and Interaction Analysis
5.5. Moderated Mediation
6. Conclusions
6.1. Theoretical Contributions
6.2. Management Implications
6.3. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A





References
- Li, B.; Yao, R.; Nan, Y. How do friendship artificial intelligence chatbots (FAIC) benefit the continuance using intention and customer engagement? J. Consum. Behav. 2023, 22, 1376–1398. [Google Scholar] [CrossRef]
- Longoni, C.; Cian, L. Artificial intelligence in utilitarian vs. hedonic contexts: The “word-of-machine” effect. J. Mark. 2022, 86, 91–108. [Google Scholar] [CrossRef]
- Lotfi, I.; El Bouhadi, A. Artificial intelligence methods: Toward a new decision making tool. Appl. Artif. Intell. 2022, 36, 1992141. [Google Scholar] [CrossRef]
- Kreps, S.; McCain, R.M.; Brundage, M. All the news that’s fit to fabricate: AI-generated text as a tool of media misinformation. J. Exp. Political Sci. 2022, 9, 104–117. [Google Scholar] [CrossRef]
- Leung, D. Unraveling the interplay of review depth, review breadth, and review language style on review usefulness and review adoption. Int. J. Hosp. Manag. 2021, 97, 102989. [Google Scholar] [CrossRef]
- Liu, A.X.; Xie, Y.; Zhang, J. It’s not just what you say, but how you say it: The effect of language style matching on perceived quality of consumer reviews. J. Interact. Mark. 2019, 46, 70–86. [Google Scholar] [CrossRef]
- Castelo, N.; Bos, M.W.; Lehmann, D.R. Task-dependent algorithm aversion. J. Mark. Res. 2019, 56, 809–825. [Google Scholar] [CrossRef]
- Luo, X.; Qin, M.S.; Fang, Z.; Qu, Z. Artificial intelligence coaches for sales agents: Caveats and solutions. J. Mark. 2021, 85, 14–32. [Google Scholar] [CrossRef]
- Longoni, C.; Bonezzi, A.; Morewedge, C.K. Resistance to medical artificial intelligence. J. Consum. Res. 2019, 46, 629–650. [Google Scholar] [CrossRef]
- Granulo, A.; Fuchs, C.; Puntoni, S. Preference for human (vs. robotic) labor is stronger in symbolic consumption contexts. J. Consum. Psychol. 2021, 31, 72–80. [Google Scholar] [CrossRef]
- Baek, T.H.; Kim, H.J.; Kim, J. AI-generated recommendations: Roles of language style, perceived AI human-likeness, and recommendation agent. Int. J. Hosp. Manag. 2025, 126, 104106. [Google Scholar] [CrossRef]
- Jiang, Z.; Benbasat, I. Virtual product experience: Effects of visual and functional control of products on perceived diagnosticity and flow in electronic shopping. J. Manag. Inf. Syst. 2004, 21, 111–147. [Google Scholar] [CrossRef]
- Chakraborty, U. Perceived credibility of online hotel reviews and its impact on hotel booking intentions. Int. J. Contemp. Hosp. Manag. 2019, 31, 3465–3483. [Google Scholar] [CrossRef]
- Nepomuceno, M.V.; Laroche, M.; Richard, M.-O. How to reduce perceived risk when buying online: The interactions between intangibility, product knowledge, brand familiarity, privacy and security concerns. J. Retail. Consum. Serv. 2014, 21, 619–629. [Google Scholar] [CrossRef]
- Manes, E.; Tchetchik, A. The role of electronic word of mouth in reducing information asymmetry: An empirical investigation of online hotel booking. J. Bus. Res. 2018, 85, 185–196. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef]
- Haefner, N.; Wincent, J.; Parida, V.; Gassmann, O. Artificial intelligence and innovation management: A review, framework, and research agenda✰. Technol. Forecast. Soc. Change 2021, 162, 120392. [Google Scholar] [CrossRef]
- Kaplan, A.; Haenlein, M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus. Horiz. 2019, 62, 15–25. [Google Scholar] [CrossRef]
- Xia, Q.; He, X.; Gong, S. AI-disclosure and brand modernity: The role of “AI=novelty” lay belief. J. Prod. Brand Manag. 2025, 34, 878–891. [Google Scholar] [CrossRef]
- Aiolfi, S. How shopping habits change with artificial intelligence: Smart speakers’ usage intention. Int. J. Retail Distrib. Manag. 2023, 51, 1288–1312. [Google Scholar] [CrossRef]
- Chen, Y.; Mao, Y. Talking the talk: How AI voice assistants’ apology styles shape consumer satisfaction in service recovery. Asia Pac. J. Mark. Logist. 2025. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, S.; Zhang, T.; Gu, Q.; Han, W.; Zhu, Y. The AI empathy effect: A mechanism of emotional contagion. J. Hosp. Mark. Manag. 2024, 33, 703–734. [Google Scholar] [CrossRef]
- Yu, X.; Gu, Q.; Liu, X. Research on the Influence Mechanism of AI Sound Cues on Decision Outcomes from the Perspective of Perceptual Contagion Theory. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 243. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, Y.; Zeng, Y.; Cong, R. Artificial Intelligence Disclosure in Cause-Related Marketing: A Persuasion Knowledge Perspective. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 193. [Google Scholar] [CrossRef]
- Liu, M.; Tang, X.; Xia, S.; Zhang, S.; Zhu, Y.; Meng, Q. Algorithm aversion: Evidence from ridesharing drivers. Manag. Sci. 2023. [Google Scholar] [CrossRef]
- Fan, X. Human wisdom vs. artificial intelligence: Handmade production and product creativity evaluations. Asia Pac. J. Mark. Logist. 2025. [Google Scholar] [CrossRef]
- Yang, S.; Yao, J.; Qazi, A. Does the review deserve more helpfulness when its title resembles the content? Locating helpful reviews by text mining. Inf. Process. Manag. 2020, 57, 102179. [Google Scholar] [CrossRef]
- Kalberg, S. Max Weber’s types of rationality: Cornerstones for the analysis of rationalization processes in history. Am. J. Sociol. 1980, 85, 1145–1179. [Google Scholar] [CrossRef]
- Huang, Y.; Li, C.; Wu, J.; Lin, Z. Online customer reviews and consumer evaluation: The role of review font. Inf. Manag. 2018, 55, 430–440. [Google Scholar] [CrossRef]
- Srivastava, V.; Kalro, A.D. Enhancing the helpfulness of online consumer reviews: The role of latent (content) factors. J. Interact. Mark. 2019, 48, 33–50. [Google Scholar] [CrossRef]
- Bapna, R.; Langer, N.; Mehra, A.; Gopal, R.; Gupta, A. Human capital investments and employee performance: An analysis of IT services industry. Manag. Sci. 2013, 59, 641–658. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Hitt, L.M. Beyond computation: Information technology, organizational transformation and business performance. J. Econ. Perspect. 2000, 14, 23–48. [Google Scholar] [CrossRef]
- Tan, C.-H.; Teo, H.-H.; Benbasat, I. Assessing screening and evaluation decision support systems: A resource-matching approach. Inf. Syst. Res. 2010, 21, 305–326. [Google Scholar] [CrossRef]
- Southgate, D.; Westoby, N.; Page, G. Creative determinants of viral video viewing. Int. J. Advert. 2010, 29, 349–368. [Google Scholar] [CrossRef]
- Loughnan, S.; Haslam, N. Animals and androids: Implicit associations between social categories and nonhumans. Psychol. Sci. 2007, 18, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Hattori, E.A.; Yamakawa, M.; Miwa, K. Human bias in evaluating AI product creativity. J. Creat. 2024, 34, 100087. [Google Scholar] [CrossRef]
- Herr, P.M.; Kardes, F.R.; Kim, J. Effects of word-of-mouth and product-attribute information on persuasion: An accessibility-diagnosticity perspective. J. Consum. Res. 1991, 17, 454–462. [Google Scholar] [CrossRef]
- Jiang, Z.; Benbasat, I. The effects of presentation formats and task complexity on online consumers’ product understanding. MIS Q. 2007, 31, 475–500. [Google Scholar] [CrossRef]
- Kempf, D.S.; Smith, R.E. Consumer processing of product trial and the influence of prior advertising: A structural modeling approach. J. Mark. Res. 1998, 35, 325–338. [Google Scholar] [CrossRef]
- Filieri, R. What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM. J. Bus. Res. 2015, 68, 1261–1270. [Google Scholar] [CrossRef]
- Sweller, J. Cognitive load during problem solving: Effects on learning. Cogn. Sci. 1988, 12, 257–285. [Google Scholar] [CrossRef]
- Sicilia, M.; Ruiz, S. The effects of the amount of information on cognitive responses in online purchasing tasks. Electron. Commer. Res. Appl. 2010, 9, 183–191. [Google Scholar] [CrossRef]
- Herzenstein, M.; Posavac, S.S.; Brakus, J.J. Adoption of new and really new products: The effects of self-regulation systems and risk salience. J. Mark. Res. 2007, 44, 251–260. [Google Scholar] [CrossRef]
- Cacioppo, J.T.; Petty, R.E.; Quintanar, L.R. Individual differences in relative hemispheric alpha abundance and cognitive responses to persuasive communications. J. Personal. Soc. Psychol. 1982, 43, 623. [Google Scholar] [CrossRef]
- Lord, K.R.; Putrevu, S. Exploring the dimensionality of the need for cognition scale. Psychol. Mark. 2006, 23, 11–34. [Google Scholar] [CrossRef]
- Cacioppo, J.T.; Petty, R.E.; Morris, K.J. Effects of need for cognition on message evaluation, recall, and persuasion. J. Personal. Soc. Psychol. 1983, 45, 805–818. [Google Scholar] [CrossRef]
- Cacioppo, J.T.; Petty, R.E.; Feinstein, J.A.; Jarvis, W.B.G. Dispositional differences in cognitive motivation: The life and times of individuals varying in need for cognition. Psychol. Bull. 1996, 119, 197–253. [Google Scholar] [CrossRef]
- Haugtvedt, C.P.; Petty, R.E.; Cacioppo, J.T. Need for cognition and advertising: Understanding the role of personality variables in consumer behavior. J. Consum. Psychol. 1992, 1, 239–260. [Google Scholar] [CrossRef]
- Kivetz, R.; Simonson, I. The effects of incomplete information on consumer choice. J. Mark. Res. 2000, 37, 427–448. [Google Scholar] [CrossRef]
- Martin, B.A.; Lang, B.; Wong, S.; Martin, B.A. Conclusion explicitness in advertising: The moderating role of need for cognition (NFC) and argument quality (AQ) on persuasion. J. Advert. 2003, 32, 57–66. [Google Scholar] [CrossRef]
- Youn, S.; Kim, H. Effects of construal level and need for cognition on consumers’ responses to temporally framed benefits. J. Consum. Behav. 2019, 18, 135–150. [Google Scholar] [CrossRef]
- Pham, M.T.; Avnet, T. Ideals and oughts and the reliance on affect versus substance in persuasion. J. Consum. Res. 2004, 30, 503–518. [Google Scholar] [CrossRef]
- Lins de Holanda Coelho, G.; Hanel, P.H.P.; Wolf, L.J. The Very Efficient Assessment of Need for Cognition: Developing a Six-Item Version. Assessment 2020, 27, 1870–1885. [Google Scholar] [CrossRef]
- Nettelhorst, S.C.; Youmans, R.J. The effects of advertisement variation and need for cognition on attitudes toward products. New Sch. Psychol. Bull. 2012, 9, 68–73. [Google Scholar]
- Wang, Z.; Yuan, R.; Li, B. Are Recommendation Systems Annoying? An Empirical Study of Assessing the Impacts of AI Characteristics on Technology Well-Being. J. Consum. Behav. 2025, 24, 178–200. [Google Scholar] [CrossRef]
- Wünderlich, N.V.; Heinonen, K.; Ostrom, A.L.; Patricio, L.; Sousa, R.; Voss, C.; Lemmink, J.G. “Futurizing” smart service: Implications for service researchers and managers. J. Serv. Mark. 2015, 29, 442–447. [Google Scholar] [CrossRef]
- Ma, X.; Huo, Y. Are users willing to embrace ChatGPT? Exploring the factors on the acceptance of chatbots from the perspective of AIDUA framework. Technol. Soc. 2023, 75, 102362. [Google Scholar] [CrossRef]
- Fang, C.-H.; Lin, J.-Y.; Lin, T.M. Exploring the impact of AI-translated hotel reviews: The roles of reviewer nationality, cosmopolitanism, and review dispersion. Asia Pac. J. Tour. Res. 2024, 30, 1266–1281. [Google Scholar] [CrossRef]
- Zhang, H.; Xiang, Z.; Zach, F.J. Generative AI vs. humans in online hotel review management: A Task-Technology Fit perspective. Tour. Manag. 2025, 110, 105187. [Google Scholar] [CrossRef]
- Xu, X.; Huang, Y. Restaurant information cues, Diners’ expectations, and need for cognition: Experimental studies of online-to-offline mobile food ordering. J. Retail. Consum. Serv. 2019, 51, 231–241. [Google Scholar] [CrossRef]



| β | SE | LLCI | ULCI | Effect Size | |
|---|---|---|---|---|---|
| Total effects | 0.527 | 0.116 | 0.299 | 0.755 | |
| Direct effects (AIO→PUCRS) | 0.369 | 0.089 | 0.193 | 0.545 | 69.81% |
| Indirect effects (AIO→PD→PUCRS) | 0.158 | 0.079 | 0.013 | 0.322 | 30.19% |
| NFC | Effect Type | β | SE | LLCI | ULCI |
|---|---|---|---|---|---|
| High-NFC | Total effects | 0.160 | 0.131 | −0.098 | 0.419 |
| Direct effects (AIO→PUCRS) | 0.074 | 0.097 | −0.118 | 0.266 | |
| Indirect effects (AIO→PD→PUCRS) | 0.086 | 0.092 | −0.074 | 0.296 | |
| Low-NFC | Total effects | 0.638 | 0.151 | 0.339 | 0.936 |
| Direct effects (AIO→PUCRS) | 0.343 | 0.106 | 0.133 | 0.553 | |
| Indirect effects (AIO→PD→PUCRS) | 0.295 | 0.114 | 0.078 | 0.526 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, Z.; Che, C. How AI Overview of Customer Reviews Influences Consumer Perceptions in E-Commerce? J. Theor. Appl. Electron. Commer. Res. 2025, 20, 315. https://doi.org/10.3390/jtaer20040315
Bian Z, Che C. How AI Overview of Customer Reviews Influences Consumer Perceptions in E-Commerce? Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(4):315. https://doi.org/10.3390/jtaer20040315
Chicago/Turabian StyleBian, Zihan, and Cheng Che. 2025. "How AI Overview of Customer Reviews Influences Consumer Perceptions in E-Commerce?" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 4: 315. https://doi.org/10.3390/jtaer20040315
APA StyleBian, Z., & Che, C. (2025). How AI Overview of Customer Reviews Influences Consumer Perceptions in E-Commerce? Journal of Theoretical and Applied Electronic Commerce Research, 20(4), 315. https://doi.org/10.3390/jtaer20040315

