How Mind Perception Shapes Influencer–Product Fit: The Diverging Effects of Virtual Versus Human Influencers on Utilitarian and Hedonic Evaluations
Abstract
1. Introduction
2. Theoretical Background and Hypotheses
2.1. Virtual Influencers vs. Human Influencers
2.2. Predicting Influencer-Product Fit: Utilitarian vs. Hedonic Products
2.3. The Underlying Mechanism: A Mind Perception Account
Conceptual Distinctions and Theoretical Advancement
2.4. The Downstream Consequences of Fit in Deceptive Contexts
2.5. Overview of Studies
3. Study 1
3.1. Method
3.1.1. Participants and Design
3.1.2. Materials
Influencer Stimuli
Product Stimuli
3.1.3. Procedure
3.2. Results
3.2.1. Manipulation Checks
3.2.2. Interaction Effect of Influencer Type and Product Type on Perceived Fit
3.3. Discussion
4. Study 2
4.1. Methods
4.1.1. Participants and Design
4.1.2. Materials
Influencer Stimuli
Product Stimuli
4.1.3. Procedure
4.2. Results
4.2.1. Manipulation Checks
Influencer Type
Product Type
4.2.2. Interaction Effect of Influencer Type and Product Type on Perceived Fit
4.2.3. Influence of Influencer Type on Mind Perception
4.2.4. Mediating Role of Mind Perception
4.2.5. Robustness Check
4.3. Discussion
5. Study 3a
5.1. Methods
5.1.1. Participants and Design
5.1.2. Materials
5.1.3. Procedure
5.2. Results and Discussion
5.2.1. Manipulation Checks
5.2.2. Influence of Influencer Type and Mind Perception Level on Perceived Fit
6. Study 3b
6.1. Methods
6.1.1. Participants and Design
6.1.2. Materials and Procedure
6.2. Results
6.2.1. Manipulation Checks
6.2.2. Influence of Influencer Type and Mind Perception Level on Perceived Fit
6.3. Discussion
7. Study 4a
7.1. Methods
7.1.1. Participants
7.1.2. Procedure and Materials
7.2. Results and Discussion
7.2.1. Manipulation Checks
7.2.2. Influence of Influencer Type and Product Type on Perceived Fit
7.2.3. Influence of Influencer Type and Product Type on Forgiveness
7.2.4. The Mediating Role of Perceived Fit
8. Study 4b
8.1. Methods
8.1.1. Participants
8.1.2. Design and Procedure
8.2. Results
8.2.1. Manipulation Checks
8.2.2. Influence of Influencer Type and Product Type on Perceived Fit
8.2.3. Effect on Usage Intention
8.2.4. Effect on Brand Attitude
8.2.5. Effect on Forgiveness
8.2.6. Moderated Mediation Analysis
8.3. Discussion
9. General Discussion
9.1. Theoretical Contributions
9.2. Practical Implications
9.3. Limitations and Future Research
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Byun, K.J.; Ahn, S.J. A Systematic Review of Virtual Influencers: Similarities and Differences between Human and Virtual Influencers in Interactive Advertising. J. Interact. Advert. 2023, 23, 293–306. [Google Scholar] [CrossRef]
- Robinson, B. Towards an Ontology and Ethics of Virtual Influencers. Australas. J. Inf. Syst. 2020, 24, 1–8. [Google Scholar] [CrossRef]
- Molenaar, K. Discover The Top 12 Virtual Influencers for 2025—Listed and Ranked! Influencer Marketing Hub 2021. Available online: https://influencermarketinghub.com/virtual-influencers/ (accessed on 22 September 2025).
- Lisa Top 10 Virtual Influencers in 2025. Storyclash. 2024. Available online: https://www.storyclash.com/blog/en/virtual-influencers/ (accessed on 22 September 2025).
- Liu, F.; Lee, Y.-H. Virtually Authentic: Examining the Match-up Hypothesis between Human vs Virtual Influencers and Product Types. J. Prod. Brand Manag. 2024, 33, 287–299. [Google Scholar] [CrossRef]
- Luo, L.; Kim, W. How Virtual Influencers’ Identities Are Shaped on Chinese Social Media: A Case Study of Ling. Glob. Media China 2023, 9, 325–343. [Google Scholar] [CrossRef]
- Stein, J.-P.; Linda Breves, P.; Anders, N. Parasocial Interactions with Real and Virtual Influencers: The Role of Perceived Similarity and Human-Likeness. New Media Soc. 2024, 26, 3433–3453. [Google Scholar] [CrossRef]
- Vu, Q.N.; Thi Vu, M.H.; Tran, D.A. The Impact of ChatGPT on Tourists’ Trust and Travel Planning Intention: International Researches and Current Situation in Vietnam. Int. J. Multidiscip. Res. Anal. 2024, 7, 516–521. [Google Scholar] [CrossRef]
- De Cicco, R.; Iacobucci, S.; Cannito, L.; Onesti, G.; Ceccato, I.; Palumbo, R. Virtual vs. Human Influencer: Effects on Users’ Perceptions and Brand Outcomes. Technol. Soc. 2024, 77, 102488. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Jiang, Z. Human vs. Virtual Endorser? Interaction Effect of Endorser Type and Product Type on Consumers’ Product Attitudes. In Proceedings of the 45th International Conference on Information Systems (ICIS 2024), Bangkok, Thailand, 15–18 December 2024; p. 3. Available online: https://aisel.aisnet.org/icis2024/humtechinter/humtechinter/3 (accessed on 22 September 2025).
- Chen, H.; Shao, B.; Yang, X.; Kang, W.; Fan, W. Avatars in Live Streaming Commerce: The Influence of Anthropomorphism on Consumers’ Willingness to Accept Virtual Live Streamers. Comput. Hum. Behav. 2024, 156, 108216. [Google Scholar] [CrossRef]
- Franke, C.; Groeppel-Klein, A.; Müller, K. Consumers’ Responses to Virtual Influencers as Advertising Endorsers: Novel and Effective or Uncanny and Deceiving? J. Advert. 2023, 52, 523–539. [Google Scholar] [CrossRef]
- Yao, Q.; Liu, Y.; Hu, B.; Jin, J. Virtual or Human Influencers as Endorsers? Behavioral and EEG Evidence of How Influencer Type Affects Purchase Intention of New Products. Comput. Hum. Behav. 2025, 172, 108754. [Google Scholar] [CrossRef]
- Kamins, M.A. An Investigation into the “Match-up” Hypothesis in Celebrity Advertising: When Beauty May Be Only Skin Deep. J. Advert. 1990, 19, 4–13. [Google Scholar] [CrossRef]
- Speed, R.; Thompson, P. Determinants of Sports Sponsorship Response. J. Acad. Mark. Sci. 2000, 28, 226–238. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, X.; Li, G. Virtual Influencer and Cultural Heritage Destination: Endorsement Effectiveness of Virtual versus Human Influencers. Ann. Tour. Res. 2025, 110, 103873. [Google Scholar] [CrossRef]
- Gray, H.M.; Gray, K.; Wegner, D.M. Dimensions of Mind Perception. Science 2007, 315, 619. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, O.; Kolfal, B.; Messinger, P.R.; Rizvi, S. Human or Virtual: How Influencer Type Shapes Brand Attitudes. Comput. Hum. Behav. 2023, 145, 107771. [Google Scholar] [CrossRef]
- Pagani, M.; Wind, Y. Unlocking Marketing Creativity Using Artificial Intelligence. J. Interact. Mark. 2025, 60, 1–24. [Google Scholar] [CrossRef]
- Appel, G.; Grewal, L.; Hadi, R.; Stephen, A.T. The Future of Social Media in Marketing. J. Acad. Mark. Sci. 2020, 48, 79–95. [Google Scholar] [CrossRef]
- Von Mettenheim, W.; Wiedmann, K. The Complex Triad of Congruence Issues in Influencer Marketing. J. Consum. Behav. 2021, 20, 1277–1296. [Google Scholar] [CrossRef]
- Sands, S.; Campbell, C.L.; Plangger, K.; Ferraro, C. Unreal Influence: Leveraging AI in Influencer Marketing. Eur. J. Mark. 2022, 56, 1721–1747. [Google Scholar] [CrossRef]
- Kim, J.; Im, I. Anthropomorphic Response: Understanding Interactions between Humans and Artificial Intelligence Agents. Comput. Hum. Behav. 2023, 139, 107512. [Google Scholar] [CrossRef]
- Dondapati, A.; Dehury, R.K. Virtual vs. Human Influencers: The Battle for Consumer Hearts and Minds. Comput. Hum. Behav. Artif. Hum. 2024, 2, 100059. [Google Scholar] [CrossRef]
- Liu, W.; Xin, X.; Zheng, C. The Effect of Behaviorally Anthropomorphic Service Robots on Customers’ Variety-Seeking Behavior: An Analytical Examination of Social Presence and Decision-Making Context. Front. Robot. AI 2025, 12, 1–16. [Google Scholar] [CrossRef]
- Korde, S.; Mahmood, A. Unpacking Consumer Envy Towards Virtual Influencers: Role of Deservingness and Impact on Consumer Engagement. J. Advert. Res. 2025, 1–19. [Google Scholar] [CrossRef]
- Moustakas, E.; Lamba, N.; Mahmoud, D.; Chandrasekaran, R. Blurring Lines between Fiction and Reality: Perspectives of Experts on Marketing Effectiveness of Virtual Influencers. In Proceedings of the 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Dublin, Ireland, 15–19 June 2020; pp. 1–6. [Google Scholar]
- Chen, C.; Tian, A.D.; Jiang, R. When Post Hoc Explanation Knocks: Consumer Responses to Explainable AI Recommendations. J. Interact. Mark. 2024, 59, 234–250. [Google Scholar] [CrossRef]
- Crowley, A.E.; Spangenberg, E.R.; Hughes, K.R. Measuring the Hedonic and Utilitarian Dimensions of Attitudes toward Product Categories. Mark. Lett. 1992, 3, 239–249. [Google Scholar] [CrossRef]
- Dhar, R.; Wertenbroch, K. Consumer Choice between Hedonic and Utilitarian Goods. Sage J. 2000, 37, 60–71. [Google Scholar] [CrossRef]
- Ryu, G.; Park, J.; Feick, L. The Role of Product Type and Country-of-Origin in Decisions about Choice of Endorser Ethnicity in Advertising. Psychol. Mark. 2006, 23, 487–513. [Google Scholar] [CrossRef]
- Longoni, C.; Cian, L. Artificial Intelligence in Utilitarian vs. Hedonic Contexts: The “Word-of-Machine” Effect. J. Mark. 2022, 86, 91–108. [Google Scholar] [CrossRef]
- Belanche, D.; Casaló, L.V.; Flavián, M. Human versus Virtual Influences, a Comparative Study. J. Bus. Res. 2024, 173, 114493. [Google Scholar] [CrossRef]
- Li, H.; Lei, Y.; Zhou, Q.; Yuan, H. Can You Sense without Being Human? Comparing Virtual and Human Influencers Endorsement Effectiveness. J. Retail. Consum. Serv. 2023, 75, 103456. [Google Scholar] [CrossRef]
- Hirschman, E.C.; Holbrook, M.B. Hedonic Consumption: Emerging Concepts, Methods and Propositions. J. Mark. 1982, 46, 92–101. [Google Scholar] [CrossRef]
- Botti, S.; McGill, A.L. The Locus of Choice: Personal Causality and Satisfaction with Hedonic and Utilitarian Decisions. J. Consum. Res 2011, 37, 1065–1078. [Google Scholar] [CrossRef]
- Laukkanen, T.; Xi, N.; Hallikainen, H.; Ruusunen, N.; Hamari, J. Virtual Technologies in Supporting Sustainable Consumption: From a Single-Sensory Stimulus to a Multi-Sensory Experience. Int. J. Inf. Manag. 2022, 63, 102455. [Google Scholar] [CrossRef]
- Yan, X.; Jiang, Y. Making Sense? The Sensory-Specific Nature of Virtual Influencer Effectiveness. J. Mark. 2024, 88, 84–106. [Google Scholar] [CrossRef]
- Dabiran, E.; Farivar, S.; Wang, F.; Grant, G. Virtually Human: Anthropomorphism in Virtual Influencer Marketing. J. Retail. Consum. Serv. 2024, 79, 103797. [Google Scholar] [CrossRef]
- Kim, D.; Wang, Z. Social Media Influencer vs. Virtual Influencer: The Mediating Role of Source Credibility and Authenticity in Advertising Effectiveness within AI Influencer Marketing. Comput. Hum. Behav. Artif. Hum. 2024, 2, 100100. [Google Scholar] [CrossRef]
- Koles, B.; Audrezet, A.; Moulard, J.G.; Ameen, N.; McKenna, B. The Authentic Virtual Influencer: Authenticity Manifestations in the Metaverse. J. Bus. Res. 2024, 170, 114325. [Google Scholar] [CrossRef]
- Gutuleac, R.; Baima, G.; Rizzo, C.; Bresciani, S. Will Virtual Influencers Overcome the Uncanny Valley? The Moderating Role of Social Cues. Psychol. Mark. 2024, 41, 1419–1431. [Google Scholar] [CrossRef]
- Arsenyan, J.; Mirowska, A. Almost Human? A Comparative Case Study on the Social Media Presence of Virtual Influencers. Int. J. Hum. Comput. Stud. 2021, 155, 102694. [Google Scholar] [CrossRef]
- de Brito Silva, M.J.; de Oliveira Ramos Delfino, L.; Alves Cerqueira, K.; de Oliveira Campos, P. Avatar Marketing: A Study on the Engagement and Authenticity of Virtual Influencers on Instagram. Soc. Netw. Anal. Min. 2022, 12, 130. [Google Scholar] [CrossRef]
- Gray, K.; Knobe, J.; Sheskin, M.; Bloom, P.; Barrett, L.F. More than a Body: Mind Perception and the Nature of Objectification. J. Personal. Soc. Psychol. 2011, 101, 1207–1220. [Google Scholar] [CrossRef]
- Ågerfalk, P.J. Artificial Intelligence as Digital Agency. Eur. J. Inf. Syst. 2020, 29, 1–8. [Google Scholar] [CrossRef]
- Schuetz, S.; Venkatesh, V. Research Perspectives: The Rise of Human Machines: How Cognitive Computing Systems Challenge Assumptions of User-System Interaction. J. Assoc. Inf. Syst. 2020, 21, 460–482. [Google Scholar] [CrossRef]
- Kirk, C.P.; Givi, J. The AI-Authorship Effect: Understanding Authenticity, Moral Disgust, and Consumer Responses to AI-Generated Marketing Communications. J. Bus. Res. 2025, 186, 114984. [Google Scholar] [CrossRef]
- Perry, A. AI Will Never Convey the Essence of Human Empathy. Nat. Hum. Behav. 2023, 7, 1808–1809. [Google Scholar] [CrossRef]
- Muniz, F.; Stewart, K.; Magalhães, L. Are They Humans or Are They Robots? The Effect of Virtual Influencer Disclosure on Brand Trust. J. Consum. Behav. 2024, 23, 1234–1250. [Google Scholar] [CrossRef]
- Fiske, S.T.; Cuddy, A.J.C.; Glick, P. Universal Dimensions of Social Cognition: Warmth and Competence. Trends Cognit. Sci. 2007, 11, 77–83. [Google Scholar] [CrossRef]
- Burgoon, J.K. Expectancy Violations Theory. In The International Encyclopedia of Interpersonal Communication; Berger, C.R., Roloff, M.E., Wilson, S.R., Dillard, J.P., Caughlin, J., Solomon, D., Eds.; Wiley: Hoboken, NJ, USA, 2015; pp. 1–9. ISBN 978-1-118-30605-5. [Google Scholar]
- Spears, N. The Role of Emotions and Shopping Enjoyment in Visiting Web Sites Announced in Advertisements. In Revolution in Marketing: Market Driving Changes; Spotts, H.E., Ed.; Developments in Marketing Science: Proceedings of the Academy of Marketing Science; Springer International Publishing: Cham, Germany, 2015; p. 108. ISBN 978-3-319-11760-7. [Google Scholar]
- Joireman, J.; Grégoire, Y.; Tripp, T.M. Customer Forgiveness Following Service Failures. Curr. Opin. Psychol. 2016, 10, 76–82. [Google Scholar] [CrossRef]
- Fincham, F.D.; Hall, J.; Beach, S.R.H. Forgiveness in Marriage: Current Status and Future Directions. Fam. Relat. Interdiscip. J. Appl. Fam. Stud. 2006, 55, 415–427. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Xia, S.; Jiang, A.; Lin, Z. The Effect of Different Types of Virtual Influencers on Consumers’ Emotional Attachment. J. Bus. Res. 2024, 177, 114646. [Google Scholar] [CrossRef]
- Belanche, D.; Casaló, L.V.; Flavián, M.; Ibáñez-Sánchez, S. Understanding Influencer Marketing: The Role of Congruence between Influencers, Products and Consumers. J. Bus. Res. 2021, 132, 186–195. [Google Scholar] [CrossRef]
- Miller, E.J.; Steward, B.A.; Witkower, Z.; Sutherland, C.A.M.; Krumhuber, E.G.; Dawel, A. AI Hyperrealism: Why AI Faces Are Perceived as More Real Than Human Ones. Psychol. Sci. 2023, 34, 1390–1403. [Google Scholar] [CrossRef]
- Wien, A.H.; Peluso, A.M. Influence of Human versus AI Recommenders: The Roles of Product Type and Cognitive Processes. J. Bus. Res. 2021, 137, 13–27. [Google Scholar] [CrossRef]
- Ge, X. Experimentally Manipulating Mediating Processes: Why and How to Examine Mediation Using Statistical Moderation Analyses. J. Exp. Soc. Psychol. 2023, 109, 104507. [Google Scholar] [CrossRef]
- Russo, J.; Metcalf, B.; Stephens, D. Identifying Misleading Advertising. J. Consum. Res. 1981, 8, 119–131. [Google Scholar] [CrossRef]
- Xie, Y.; Peng, S. How to Repair Customer Trust after Negative Publicity: The Roles of Competence, Integrity, Benevolence, and Forgiveness. Psychol. Mark. 2009, 26, 572–589. [Google Scholar] [CrossRef]
- Yan, L.; Keh, H.T.; Chen, J. Assimilating and Differentiating: The Curvilinear Effect of Social Class on Green Consumption. J. Consum. Res. 2021, 47, 914–936. [Google Scholar] [CrossRef]
- Evans, N.J.; Phua, J.; Lim, J.; Jun, H. Disclosing Instagram Influencer Advertising: The Effects of Disclosure Language on Advertising Recognition, Attitudes, and Behavioral Intent. J. Interact. Advert. 2017, 17, 138–149. [Google Scholar] [CrossRef]
- Thomas, V.L.; Fowler, K. Close Encounters of the AI Kind: Use of AI Influencers as Brand Endorsers. J. Advert. 2021, 50, 11–25. [Google Scholar] [CrossRef]
- Markus, H.R.; Kitayama, S. Culture and the Self: Implications for Cognition, Emotion, and Motivation. Psychol. Rev. 1991, 98, 224–253. [Google Scholar] [CrossRef]
- Triandis, H.C. Individualism & Collectivism; Westview Press: Boulder, CO, USA, 1995; p. 259. ISBN 978-0-8133-1849-3. [Google Scholar]
- Robertson, J. Robo Sapiens Japanicus by Jennifer Robertson—Paper. Available online: https://www.ucpress.edu/books/robo-sapiens-japanicus/paper (accessed on 2 October 2025).
- Yang, Y.; Sedikides, C.; Wang, Y.; Cai, H. Nature Nurtures Authenticity: Mechanisms and Consequences. J. Personal. Soc. Psychol. 2024, 126, 79–104. [Google Scholar] [CrossRef] [PubMed]
- Meuter, M.L.; Ostrom, A.L.; Bitner, M.J.; Roundtree, R. The Influence of Technology Anxiety on Consumer Use and Experiences with Self-Service Technologies. J. Bus. Res. 2003, 56, 899–906. [Google Scholar] [CrossRef]
- Vogel, E.A.; Rose, J.P.; Roberts, L.R.; Eckles, K. Social Comparison, Social Media, and Self-Esteem. Psychol. Pop. Media Cult. 2014, 3, 206–222. [Google Scholar] [CrossRef]
- Roche, C.; Wall, P.J.; Lewis, D. Ethics and Diversity in Artificial Intelligence Policies, Strategies and Initiatives. AI Ethics 2023, 3, 1095–1115. [Google Scholar] [CrossRef] [PubMed]












| Theoretical Framework | Core Focus | Key Distinction from Mind Perception |
|---|---|---|
| Anthropomorphism | Perceptual similarity to humans. | Focuses on surface cues (appearance, behavior) rather than the underlying attribution of a mind that these cues trigger. |
| Authenticity | Transparency and sincerity. | Focuses on disclosure and genuineness, whereas our view links it to perceived mental autonomy (a function of agency). |
| Source Credibility | Evaluative judgments of expertise, trustworthiness, etc. | Identifies that a match is effective, but our framework explains why through the alignment of inferred mental capacities with product benefits. |
| Warmth-Competence (SCM) | Downstream social evaluation of intent and capability. | A social judgment made about an agent, whereas mind perception is the more foundational cognitive attribution of a mind that precedes it. |
| Dependent Variable | Index of Moderated Mediation | 95% CI | Indirect Effect (Utilitarian) | 95% CI | Indirect Effect (Hedonic) | 95% CI |
|---|---|---|---|---|---|---|
| Usage Intention | −0.64 | [−1.09, −0.24] | 0.49 | [0.17, 0.86] | −0.15 | [−0.30, −0.03] |
| Brand Attitude | −0.58 | [−0.98, −0.22] | 0.44 | [0.16, 0.77] | −0.14 | [−0.28, −0.03] |
| Forgiveness | −0.60 | [−1.06, −0.18] | 0.46 | [0.13, 0.82] | −0.14 | [−0.29, −0.02] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Hao, Z.; Liang, F.; Fan, M.; Zhang, W.; Wu, C.; He, X. How Mind Perception Shapes Influencer–Product Fit: The Diverging Effects of Virtual Versus Human Influencers on Utilitarian and Hedonic Evaluations. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 305. https://doi.org/10.3390/jtaer20040305
Duan Y, Hao Z, Liang F, Fan M, Zhang W, Wu C, He X. How Mind Perception Shapes Influencer–Product Fit: The Diverging Effects of Virtual Versus Human Influencers on Utilitarian and Hedonic Evaluations. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(4):305. https://doi.org/10.3390/jtaer20040305
Chicago/Turabian StyleDuan, Yan, Zicheng Hao, Fuqun Liang, Mingxuan Fan, Wei Zhang, Chenjing Wu, and Xianyou He. 2025. "How Mind Perception Shapes Influencer–Product Fit: The Diverging Effects of Virtual Versus Human Influencers on Utilitarian and Hedonic Evaluations" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 4: 305. https://doi.org/10.3390/jtaer20040305
APA StyleDuan, Y., Hao, Z., Liang, F., Fan, M., Zhang, W., Wu, C., & He, X. (2025). How Mind Perception Shapes Influencer–Product Fit: The Diverging Effects of Virtual Versus Human Influencers on Utilitarian and Hedonic Evaluations. Journal of Theoretical and Applied Electronic Commerce Research, 20(4), 305. https://doi.org/10.3390/jtaer20040305

