How Organizations Choose Open-Source Generative AI Under Normative Uncertainty: The Moderating Role of Exploitative and Exploratory Behaviors
Abstract
1. Introduction
2. Hypothesis Development
2.1. Literature Review
2.1.1. Absorptive Capacity and Desorptive Capacity in Open Innovation
2.1.2. Normative Uncertainty and Intentions to Adopt New Open Innovations
2.1.3. The Impact of Different Application Contexts on New Open Innovation Adoption
2.2. Hypotheses
2.2.1. Intention of Open GenAI Adoption by Open-Source Oriented Organizations
2.2.2. Normative Uncertainty in Open-Source Generative AI Adoption
2.2.3. Process vs. Product Applications of Generative AI
3. Methods
3.1. Data
3.2. Measurement
3.2.1. Dependent Variable: Intention to Adopt Open-Source Generative AI in Organization
3.2.2. Independent Variables: Open-Source Orientation
3.2.3. Two-Way Moderating Variables: Normative Uncertainty
3.2.4. Three-Way Moderating Variables: Process- and Product-Oriented Application of Generative AI
3.2.5. Control Variables
3.2.6. Instrumental Variable
4. Statistical Analysis
5. Results
6. Discussion
6.1. Theoretical Implications
6.2. Practical Implications
6.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holmström, J.; Carroll, N. How organizations can innovate with generative AI. Bus. Horiz. 2025, 68, 559–573. [Google Scholar] [CrossRef]
- Mariani, M.; Dwivedi, Y.K. Generative artificial intelligence in innovation management: A preview of future research developments. J. Bus. Res. 2024, 175, 114542. [Google Scholar] [CrossRef]
- López-Solís, O.; Luzuriaga-Jaramillo, A.; Bedoya-Jara, M.; Naranjo-Santamaría, J.; Bonilla-Jurado, D.; Acosta-Vargas, P. Effect of generative artificial intelligence on strategic decision-making in entrepreneurial business initiatives: A systematic literature review. Adm. Sci. 2025, 15, 66. [Google Scholar] [CrossRef]
- Cohen, W.M.; Levinthal, D.A. Innovation and Learning: The Two Faces of R & D. Econ. J. 1989, 99, 569–596. [Google Scholar] [CrossRef]
- Zahra, S.A.; George, G. Absorptive capacity: A review, reconceptualization, and extension. Acad. Manag. Rev. 2002, 27, 185–203. [Google Scholar] [CrossRef]
- Chesbrough, H.W. Open Innovation: The New Imperative for Creating and Profiting from Technology; Harvard Business Press: Brighton, MA, USA, 2003. [Google Scholar]
- West, J.; Gallagher, S. Challenges of open innovation: The paradox of firm investment in open-source software. Rd Manag. 2006, 36, 319–331. [Google Scholar] [CrossRef]
- Baldwin, C.; Von Hippel, E. Modeling a paradigm shift: From producer innovation to user and open collaborative innovation. Organ. Sci. 2011, 22, 1399–1417. [Google Scholar] [CrossRef]
- Von Krogh, G.; Von Hippel, E. The promise of research on open source software. Manag. Sci. 2006, 52, 975–983. [Google Scholar] [CrossRef]
- Lakhani, K.; Panetta, J. The principles of distributed innovation. In Successful OSS Project Design and Implementation; Routledge: London, UK, 2016; pp. 7–26. [Google Scholar]
- March, J.G. Exploration and exploitation in organizational learning. Organ. Sci. 1991, 2, 71–87. [Google Scholar] [CrossRef]
- Galleli, B.; Amaral, L. Bridging Institutional Theory and Social and Environmental Efforts in Management: A Review and Research Agenda. J. Manag. 2025. [Google Scholar] [CrossRef]
- Rhee, M.; Valdez, M.E. Contextual factors surrounding reputation damage with potential implications for reputation repair. Acad. Manag. Rev. 2009, 34, 146–168. [Google Scholar] [CrossRef]
- Tushman, M.L.; O’Reilly, C.A., III. Ambidextrous organizations: Managing evolutionary and revolutionary change. Calif. Manag. Rev. 1996, 38, 8–29. [Google Scholar] [CrossRef]
- Benders, J.; Van Veen, K. What’s in a fashion? Interpretative viability and management fashions. Organization 2001, 8, 33–53. [Google Scholar] [CrossRef]
- Fabrizio, K.R. Absorptive capacity and the search for innovation. Res. Policy 2009, 38, 255–267. [Google Scholar] [CrossRef]
- Lane, P.J.; Koka, B.R.; Pathak, S. The reification of absorptive capacity: A critical review and rejuvenation of the construct. Acad. Manag. Rev. 2006, 31, 833–863. [Google Scholar] [CrossRef]
- Lichtenthaler, U.; Lichtenthaler, E. A capability-based framework for open innovation: Complementing absorptive capacity. J. Manag. Stud. 2009, 46, 1315–1338. [Google Scholar] [CrossRef]
- Aliasghar, O.; Haar, J. Open innovation: Are absorptive and desorptive capabilities complementary? Int. Bus. Rev. 2023, 32, 101865. [Google Scholar] [CrossRef]
- Chesbrough, H.; Lettl, C.; Ritter, T. Value creation and value capture in open innovation. J. Prod. Innov. Manag. 2018, 35, 930–938. [Google Scholar] [CrossRef]
- Kim, E.; Lee, I.; Kim, H.; Shin, K. Factors affecting outbound open innovation performance in bio-pharmaceutical industry-focus on out-licensing deals. Sustainability 2021, 13, 4122. [Google Scholar] [CrossRef]
- Hu, Y.; McNamara, P.; McLoughlin, D. Outbound open innovation in bio-pharmaceutical out-licensing. Technovation 2015, 35, 46–58. [Google Scholar] [CrossRef]
- Chesbrough, H. Explicating open innovation: Clarifying an emerging paradigm for understanding innovation. In New Frontiers in Open Innovation; Chesbrough, H., Vanhaverbeke, W., West, J., Eds.; Oxford University Press: Oxford, UK, 2014; pp. 3–28. [Google Scholar]
- Lane, P.J.; Lubatkin, M. Relative absorptive capacity and interorganizational learning. Strateg. Manag. J. 1998, 19, 461–477. [Google Scholar] [CrossRef]
- Chiaroni, D.; Chiesa, V.; Frattini, F. Unravelling the process from closed to open innovation: Evidence from mature, asset-intensive industries. Rd Manag. 2010, 40, 222–245. [Google Scholar] [CrossRef]
- Scott, W.R. Institutions and Organizations, 2nd ed.; Sage Publications: Thousand Oaks, CA, USA, 2001. [Google Scholar]
- Suchman, M.C. Managing legitimacy: Strategic and institutional approaches. Acad. Manag. Rev. 1995, 20, 571–610. [Google Scholar] [CrossRef]
- Ansari, S.M.; Fiss, P.C.; Zajac, E.J. Made to fit: How practices vary as they diffuse. Acad. Manag. Rev. 2010, 35, 67–92. [Google Scholar]
- Kim, T.; Yang, D. Multiple Goals, Attention Allocation, and the Intention-Achievement Gap in Energy Efficiency Innovation. Sustainability 2020, 12, 7102. [Google Scholar] [CrossRef]
- Zietsma, C.; Lawrence, T.B. Institutional work in the transformation of an organizational field: The interplay of boundary work and practice work. Adm. Sci. Q. 2010, 55, 189–221. [Google Scholar] [CrossRef]
- March, J.G.; Olsen, J.P. The uncertainty of the past: Organizational learning under ambiguity. Eur. J. Political Res. 1975, 3, 147–171. [Google Scholar] [CrossRef]
- Jalonen, H. The uncertainty of innovation: A systematic review of the literature. J. Manag. Res. 2012, 4, 1–47. [Google Scholar] [CrossRef]
- Rivette, K.G.; Kline, D. Rembrandts in the Attic: Unlocking the Hidden Value of Patents; Harvard Business School Press: Boston, MA, USA, 2000. [Google Scholar]
- Fosfuri, A. The licensing dilemma: Understanding the determinants of the rate of technology licensing. Strateg. Manag. J. 2006, 27, 1141–1158. [Google Scholar] [CrossRef]
- Lichtenthaler, U. The drivers of technology licensing: An industry comparison. Calif. Manag. Rev. 2007, 49, 67–89. [Google Scholar] [CrossRef]
- Deephouse, D.L.; Carter, S.M. An examination of differences between organizational legitimacy and organizational reputation. J. Manag. Stud. 2005, 42, 329–360. [Google Scholar] [CrossRef]
- Mishina, Y.; Block, E.S.; Mannor, M.J. The path dependence of organizational reputation: How social judgment influences assessments of capability and character. Acad. Manag. J. 2012, 55, 971–995. [Google Scholar] [CrossRef]
- Pfarrer, M.D.; Decelles, K.A.; Smith, K.G.; Taylor, M.S. After the fall: Reintegrating the corrupt organization. Acad. Manag. Rev. 2008, 33, 730–749. [Google Scholar] [CrossRef]
- Sims, R.R. Toward a better understanding of organizational efforts to rebuild reputation following an ethical scandal. J. Bus. Ethics 2009, 90, 453–472. [Google Scholar] [CrossRef]
- Gupta, A.K.; Smith, K.G.; Shalley, C.E. The interplay between exploration and exploitation. Acad. Manag. J. 2006, 49, 693–706. [Google Scholar] [CrossRef]
- Lavie, D.; Stettner, U.; Tushman, M.L. Exploration and exploitation within and across organizations. Acad. Manag. Ann. 2010, 4, 109–155. [Google Scholar] [CrossRef]
- March, J.G. Rationality, foolishness, and adaptive intelligence. Strateg. Manag. J. 2006, 27, 201–214. [Google Scholar] [CrossRef]
- Bommasani, R.; Hudson, D.A.; Adeli, E.; Altman, R.; Arora, S.; von Arx, S.; Bernstein, M.S.; Bohg, J.; Bosselut, A.; Brunskill, E. On the opportunities and risks of foundation models. arXiv 2021, arXiv:2108.07258. [Google Scholar] [CrossRef]
- Microsoft. What Is Responsible AI? Available online: https://learn.microsoft.com/en-us/azure/machine-learning/concept-responsible-ai?view=azureml-api-2 (accessed on 29 June 2025).
- Fjeld, J.; Achten, N.; Hilligoss, H.; Nagy, A.; Srikumar, M. Principled Artificial Intelligence; Berkman Klein Center: Cambridge, MA, USA, 2020; Available online: https://cyber.harvard.edu/publication/2020/principled-ai (accessed on 29 June 2025).
- Dahlander, L.; Gann, D.M. How open is innovation? Res. Policy 2010, 39, 699–709. [Google Scholar] [CrossRef]
- IBM. Securing Generative AI: Risk Taxonomy and Mitigation Playbook; IBM Security Report: Armonk, NY, USA, 2024. [Google Scholar]
- Hacker, P. Sustainable AI regulation. Common Mark. Law Rev. 2024, 61, 345–386. [Google Scholar] [CrossRef]
- Tschang, F.T.; Almirall, E. Artificial intelligence as augmenting automation: Implications for employment. Acad. Manag. Perspect. 2021, 35, 642–659. [Google Scholar] [CrossRef]
- Raisch, S.; Fomina, K. Combining human and artificial intelligence: Hybrid problem-solving in organizations. Acad. Manag. Rev. 2025, 50, 441–464. [Google Scholar] [CrossRef]
- Ramanujam, R.; Goodman, P.S. Latent errors and adverse organizational consequences: A conceptualization. J. Organ. Behav. Int. J. Ind. Occup. Organ. Psychol. Behav. 2003, 24, 815–836. [Google Scholar] [CrossRef]
- Dobbe, R.; Gilbert, T.K.; Mintz, Y. Hard choices in artificial intelligence: Addressing normative uncertainty through sociotechnical commitments. arXiv 2019, arXiv:1911.09005. [Google Scholar] [CrossRef]
- Schlaile, M.P.; Urmetzer, S.; Blok, V.; Andersen, A.D.; Timmermans, J.; Mueller, M.; Fagerberg, J.; Pyka, A. Innovation systems for transformations towards sustainability? Taking the normative dimension seriously. Sustainability 2017, 9, 2253. [Google Scholar] [CrossRef]
- Bartholomew, D.J.; Steele, F.; Moustaki, I. Analysis of Multivariate Social Science Data; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Olsson, U. Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika 1979, 44, 443–460. [Google Scholar] [CrossRef]
- West, J.; O’mahony, S. The role of participation architecture in growing sponsored open source communities. Ind. Innov. 2008, 15, 145–168. [Google Scholar] [CrossRef]
- Fitzgerald, B. The transformation of open source software. MIS Q. 2006, 30, 587–598. [Google Scholar] [CrossRef]
- Terza, J.V.; Basu, A.; Rathouz, P.J. Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling. J. Health Econ. 2008, 27, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef]
- Ambrozio, S.; Lindeque, J.P.; Peter, M.K. Navigating uncertainty: Isomorphic pressures in cloud computing adoption. In The Palgrave Handbook of Breakthrough Technologies in Contemporary Organisations; Moussa, M., McMurray, A., Eds.; Springer Nature: Singapore, 2025; Chapter 18. [Google Scholar] [CrossRef]
- DiMaggio, P.J.; Powell, W.W. The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. Am. Sociol. Rev. 1983, 48, 147–160. [Google Scholar] [CrossRef]
- United States White House. Winning the Race: America’s AI Action Plan. 2025. Available online: https://www.whitehouse.gov/wp-content/uploads/2025/07/Americas-AI-Action-Plan.pdf (accessed on 14 August 2025).
- Hannan, M.T.; Freeman, J. The population ecology of organizations. Am. J. Sociol. 1977, 82, 929–964. [Google Scholar] [CrossRef]
- Weick, K.E. Sensemaking in Organizations; Sage Publications: Thousand Oaks, CA, USA, 1995. [Google Scholar]
- Tushman, M.L.; Anderson, P. Technological discontinuities and organizational environments. In Organizational Innovation; Routledge: Abingdon, UK, 2018; pp. 345–372. [Google Scholar]
- Ansell, C.; Boin, A. Taming deep uncertainty: The potential of pragmatist principles for understanding and improving strategic crisis management. Adm. Soc. 2019, 51, 1079–1112. [Google Scholar] [CrossRef]
- Burt, R.S. Structural Holes: The Social Structure of Competition; Harvard University Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Podolny, J.M. Status Signals: A Sociological Study of Market Competition; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Kim, B.K. Normative uncertainty and middlestatus innovation in the US daily newspaper industry. Strateg. Organ. 2019, 18, 377–406. [Google Scholar] [CrossRef]
- Mittelstadt, B.D.; Allo, P.; Taddeo, M.; Wachter, S.; Floridi, L. The ethics of algorithms: Mapping the debate. Big Data Soc. 2016, 3, 2053951716679679. [Google Scholar] [CrossRef]
- Martin, K. Ethical implications and accountability of algorithms. J. Bus. Ethics 2019, 160, 835–850. [Google Scholar] [CrossRef]
Cluster ID | Item Labels |
---|---|
Cluster 1 | Ease of integration |
Cluster 2 | User experience |
Cluster 3 | Customizability, Support and maintenance, Vendor reputation |
Cluster 4 | Performance or speed |
Cluster 5 | Scalability |
Cluster 6 | Being open-source |
Cluster 7 | Accuracy or performance |
Cluster 8 | Cost |
Cluster 9 | Privacy, Security |
Cluster 10 | Compliance with regulations |
Cluster ID | Item Labels |
---|---|
Cluster 1 | Safety, Security risks |
Cluster 2 | Ethical issues, Privacy of our data, Regulatory compliance and legal uncertainties or liabilities |
Cluster 3 | Customization of the tools to meet our needs, Integration with existing systems |
Cluster 4 | Model fine-tuning |
Cluster 5 | Trustworthy data and models |
Cluster 6 | Quality of AI output |
Cluster 7 | Cost of development, Cost of operations |
Cluster 8 | Deployment of the solution, Ease of deployment, Ease of use |
Cluster 9 | Technical challenges, Technology maturity |
Cluster 10 | Lack of business needs, Lack of skills or expertise, Lack of support, Latency of the models, Uncertain ROI |
Variable | Min | Max | Mean | SD |
---|---|---|---|---|
DV: Intention to adopt open-source generative AI in organization | 1.00 | 5.00 | 4.03 | 0.81 |
Size | 1.00 | 6.00 | 3.03 | 1.86 |
IT industry | 0.00 | 1.00 | 0.67 | 0.47 |
HQ Location | 0.00 | 1.00 | 0.47 | 0.50 |
Open-source neutral hosting importance | −3.33 | 3.90 | 0.10 | 1.38 |
Gen AI maturity stage | 1.00 | 5.00 | 2.93 | 1.38 |
Perceived Gen AI impacts | −2.81 | 4.62 | 0.22 | 1.59 |
Perceived ROI from Gen AI | −2.56 | 3.25 | 0.09 | 1.19 |
(Hypothesis 1) Open-source Orientation (Mean-centered) | −2.51 | 1.49 | 0.55 | 0.85 |
Normative Uncertainty (Mean-centered) | −1.10 | 1.71 | −0.04 | 0.83 |
(Hypothesis 2) OS Orientation x Normative Uncertainty | −3.45 | 2.54 | −0.08 | 0.93 |
Product-oriented application (dummy) | 0.00 | 1.00 | 0.38 | 0.49 |
OS Orientation x Product-oriented | −1.51 | 1.49 | 0.23 | 0.60 |
Normative Uncertainty x Product-oriented | −1.10 | 1.71 | −0.01 | 0.52 |
(Hypothesis 3a) OS Orientation x Normative Uncertainty x Product-oriented | −1.64 | 2.54 | 0.01 | 0.58 |
Process-oriented application (dummy) | 0.00 | 1.00 | 0.27 | 0.44 |
OS Orientation x Process-oriented | −2.51 | 1.49 | 0.16 | 0.51 |
Normative Uncertainty x Process-oriented | −1.10 | 1.71 | −0.02 | 0.45 |
(Hypothesis 3b) OS Orientation x Normative Uncertainty x Process-oriented | −3.45 | 2.54 | −0.05 | 0.52 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (16) | (17) | (18) | (19) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) Intention to adopt open-source generative AI in organization | 1.00 | 0.02 | 0.11 | −0.16 | 0.06 | 0.10 | 0.14 | 0.10 | 0.25 | 0.10 | −0.01 | 0.06 | 0.23 | 0.07 | 0.11 | 0.01 | 0.13 | 0.14 | −0.06 |
(2) Size | 0.02 | 1.00 | −0.17 | 0.12 | 0.01 | 0.09 | 0.10 | 0.13 | −0.19 | 0.28 | 0.12 | −0.03 | −0.12 | 0.14 | 0.03 | 0.00 | −0.12 | 0.14 | 0.13 |
(3) IT Industry | 0.11 | −0.17 | 1.00 | −0.04 | 0.01 | 0.14 | 0.18 | 0.16 | 0.18 | −0.09 | −0.01 | 0.07 | 0.05 | −0.22 | −0.14 | 0.04 | 0.10 | 0.04 | 0.04 |
(4) HQ Location | −0.16 | 0.12 | −0.04 | 1.00 | 0.02 | 0.06 | −0.11 | −0.12 | −0.11 | 0.07 | 0.04 | −0.09 | −0.11 | 0.04 | 0.05 | 0.12 | −0.03 | −0.03 | −0.02 |
(5) Open-source Neutral Hosting Importance | 0.06 | 0.01 | 0.01 | 0.02 | 1.00 | −0.08 | 0.20 | 0.15 | −0.08 | 0.13 | 0.01 | 0.00 | 0.06 | 0.06 | 0.03 | −0.06 | −0.30 | 0.18 | −0.03 |
(6) Gen AI maturity stage | 0.10 | 0.09 | 0.14 | 0.06 | −0.08 | 1.00 | 0.05 | 0.04 | 0.14 | 0.08 | 0.08 | 0.02 | 0.13 | 0.03 | 0.12 | 0.24 | 0.08 | 0.06 | −0.05 |
(7) Perceived Gen AI Impacts | 0.14 | 0.10 | 0.18 | −0.11 | 0.20 | 0.05 | 1.00 | 0.40 | 0.13 | 0.13 | 0.06 | 0.07 | 0.11 | 0.02 | −0.03 | 0.03 | 0.05 | 0.15 | 0.18 |
(8) ROI from Gen AI | 0.10 | 0.13 | 0.16 | −0.12 | 0.15 | 0.04 | 0.40 | 1.00 | 0.07 | −0.07 | −0.03 | −0.03 | −0.01 | −0.02 | −0.02 | 0.03 | 0.08 | −0.04 | 0.03 |
(9) Open-source (OS) Orientation | 0.25 | −0.19 | 0.18 | −0.11 | −0.08 | 0.14 | 0.13 | 0.07 | 1.00 | −0.08 | 0.11 | 0.06 | 0.57 | 0.03 | 0.05 | 0.05 | 0.45 | −0.10 | 0.11 |
(10) Normative Uncertainty | 0.10 | 0.28 | −0.09 | 0.07 | 0.13 | 0.08 | 0.13 | −0.07 | −0.08 | 1.00 | 0.55 | 0.02 | 0.03 | 0.62 | 0.41 | −0.03 | −0.10 | 0.53 | 0.22 |
(11) OS Orientation × Normative Uncertainty | −0.01 | 0.12 | −0.01 | 0.04 | 0.01 | 0.08 | 0.06 | −0.03 | 0.11 | 0.55 | 1.00 | 0.08 | 0.08 | 0.41 | 0.63 | −0.07 | 0.07 | 0.23 | 0.56 |
(12) Process-oriented Application of Gen AI | 0.06 | −0.03 | 0.07 | −0.09 | 0.00 | 0.02 | 0.07 | −0.03 | 0.06 | 0.02 | 0.08 | 1.00 | 0.50 | −0.02 | 0.02 | −0.47 | −0.25 | 0.04 | 0.08 |
(13) OS Orientation × Process-oriented Application | 0.23 | −0.12 | 0.05 | −0.11 | 0.06 | 0.13 | 0.11 | −0.01 | 0.57 | 0.03 | 0.08 | 0.50 | 1.00 | 0.03 | 0.07 | −0.23 | −0.13 | 0.02 | 0.04 |
(14) Normative Uncertainty × Process-oriented Application | 0.07 | 0.14 | −0.22 | 0.04 | 0.06 | 0.03 | 0.02 | −0.02 | 0.03 | 0.62 | 0.41 | −0.02 | 0.03 | 1.00 | 0.66 | 0.01 | 0.01 | 0.00 | 0.00 |
(15) OS Orientation × Normative Uncertainty × Process-oriented Application | 0.11 | 0.03 | −0.14 | 0.05 | 0.03 | 0.12 | −0.03 | −0.02 | 0.05 | 0.41 | 0.63 | 0.02 | 0.07 | 0.66 | 1.00 | −0.01 | 0.00 | 0.00 | 0.00 |
(16) Product-oriented Application of Gen AI | 0.01 | 0.00 | 0.04 | 0.12 | −0.06 | 0.24 | 0.03 | 0.03 | 0.05 | −0.03 | −0.07 | −0.47 | −0.23 | 0.01 | −0.01 | 1.00 | 0.54 | −0.09 | −0.16 |
(17) OS Orientation × Product-oriented Application | 0.13 | −0.12 | 0.10 | −0.03 | −0.30 | 0.08 | 0.05 | 0.08 | 0.45 | −0.10 | 0.07 | −0.25 | −0.13 | 0.01 | 0.00 | 0.54 | 1.00 | −0.21 | 0.10 |
(18) Normative Uncertainty × Product-oriented Application | 0.14 | 0.14 | 0.04 | −0.03 | 0.18 | 0.06 | 0.15 | −0.04 | −0.10 | 0.53 | 0.23 | 0.04 | 0.02 | 0.00 | 0.00 | −0.09 | −0.21 | 1.00 | 0.41 |
(19) OS Orientation × Normative Uncertainty × Product-oriented Application | −0.06 | 0.13 | 0.04 | −0.02 | −0.03 | −0.05 | 0.18 | 0.03 | 0.11 | 0.22 | 0.56 | 0.08 | 0.04 | 0.00 | 0.00 | −0.16 | 0.10 | 0.41 | 1.00 |
Variable | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
---|---|---|---|---|---|---|
Size | 0.03 | 0.09 | 0.06 | 0.10 | 0.11 | 0.14 |
(0.08) | (0.08) | (0.08) | (0.08) | (0.08) | (0.08) | |
IT Industry | 0.27 | 0.22 | 0.25 | 0.37 | 0.23 | 0.42 |
(0.30) | (0.30) | (0.30) | (0.31) | (0.30) | (0.32) | |
HQ Location | −0.50 | −0.50 | −0.49 | −0.51 | −0.47 | −0.45 |
(0.28) | (0.28) | (0.28) | (0.28) | (0.28) | (0.29) | |
Open-source Neutral Hosting Importance | 0.12 | 0.14 | 0.12 | 0.09 | 0.13 | 0.15 |
(0.10) | (0.10) | (0.10) | (0.10) | (0.11) | (0.11) | |
Gen AI maturity stage | 0.14 | 0.11 | 0.08 | 0.11 | 0.09 | 0.09 |
(0.09) | (0.10) | (0.10) | (0.10) | (0.10) | (0.10) | |
Perceived Gen AI Impacts | 0.09 | 0.06 | 0.07 | 0.00 | 0.05 | 0.02 |
(0.11) | (0.11) | (0.11) | (0.11) | (0.12) | (0.12) | |
ROI from Gen AI | 0.08 | 0.07 | 0.11 | 0.13 | 0.12 | 0.13 |
(0.13) | (0.13) | (0.13) | (0.13) | (0.13) | (0.13) | |
H1) Open-source (OS) Orientation | 0.57 ** | 0.61 ** | 0.64 *** | 0.73 *** | 0.67 *** | |
(0.18) | (0.18) | (0.18) | (0.18) | (0.18) | ||
Normative Uncertainty | 0.43 | 0.38 | 0.31 | 0.33 | ||
(0.21) | (0.21) | (0.22) | (0.22) | |||
H2) OS Orientation × Normative Uncertainty | −0.36 * | −0.39 * | −0.27 | −0.42 * | ||
(0.18) | (0.18) | (0.19) | (0.19) | |||
Process-oriented Application of Gen AI | 0.04 | −0.10 | ||||
(0.34) | (0.38) | |||||
OS Orientation × Process-oriented Application | 0.37 | 0.80 * | ||||
(0.34) | (0.38) | |||||
Normative Uncertainty × Process-oriented Application | −0.58 | −0.24 | ||||
(0.43) | (0.49) | |||||
H3a) OS Orientation × Normative Uncertainty × Process-oriented Application | 1.26 ** | 1.19 ** | ||||
(0.39) | (0.46) | |||||
Product-oriented Application of Gen AI | −0.53 | −0.57 | ||||
(0.41) | (0.46) | |||||
OS Orientation × Product-oriented Application | 0.62 | 1.14 * | ||||
(0.42) | (0.47) | |||||
Normative Uncertainty × Product-oriented Application | 0.92 * | 0.85 | ||||
(0.44) | (0.50) | |||||
H3b) OS Orientation × Normative Uncertainty × Product-oriented Application | −0.94 * | −0.30 | ||||
(0.39) | (0.46) | |||||
Sample Size | 209 | 209 | 209 | 209 | 209 | 209 |
Log-Likelihood | −227.90 | −222.64 | −220.11 | −213.43 | −216.28 | −209.55 |
AIC | 477.80 | 469.30 | 468.20 | 462.90 | 468.60 | 463.10 |
BIC | 514.60 | 509.40 | 515.00 | 523.00 | 528.70 | 536.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S.; Ryee, H.; Jin, X.; Yang, D. How Organizations Choose Open-Source Generative AI Under Normative Uncertainty: The Moderating Role of Exploitative and Exploratory Behaviors. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 250. https://doi.org/10.3390/jtaer20030250
Hong S, Ryee H, Jin X, Yang D. How Organizations Choose Open-Source Generative AI Under Normative Uncertainty: The Moderating Role of Exploitative and Exploratory Behaviors. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(3):250. https://doi.org/10.3390/jtaer20030250
Chicago/Turabian StyleHong, Suengjae, Hakshun Ryee, Xiaoyan Jin, and Daegyu Yang. 2025. "How Organizations Choose Open-Source Generative AI Under Normative Uncertainty: The Moderating Role of Exploitative and Exploratory Behaviors" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 3: 250. https://doi.org/10.3390/jtaer20030250
APA StyleHong, S., Ryee, H., Jin, X., & Yang, D. (2025). How Organizations Choose Open-Source Generative AI Under Normative Uncertainty: The Moderating Role of Exploitative and Exploratory Behaviors. Journal of Theoretical and Applied Electronic Commerce Research, 20(3), 250. https://doi.org/10.3390/jtaer20030250