Unpacking Customer Experience in Online Shopping: Effects on Satisfaction and Loyalty
Abstract
1. Introduction
2. Literature Review
2.1. The Precursors of the Experience of Customers
2.1.1. Usability and Website Design
2.1.2. Omnichannel Integration and Consistency
2.1.3. Personalisation and Customisation
2.1.4. Trust, Security and Privacy
2.1.5. Fulfilment and Service Quality
2.1.6. Interactivity and Technological Features
2.2. The Downstream Constructs of CX
2.2.1. Customer Satisfaction
2.2.2. Customer Loyalty
2.2.3. Electronic Word of Mouth
2.2.4. Integrative Synthesis
3. Development of Hypotheses and Conceptual Framework
4. Materials and Methods
4.1. Nature of the Study and Methodological Approach
4.2. Sample Target
4.3. Data Collection Instrument
5. Results
5.1. Characterisation and Description of the Sample
5.2. Results of the PLS-SEM Analysis
5.3. Measurement Model Evaluation—Reflective Measurement Model
5.4. Measurement Model Evaluation—Formative Measurement Model
5.5. Structural Model Evaluation
- Customer Loyalty: Both CX and customer satisfaction are moderately correlated as drivers of loyalty (3.348—CX and CS). A VIF above the conservative caution level of 3.0 but below the critical 5.0 indicates no harmful collinearity; but results should be interpreted with an awareness of the overlap.
- Customer Satisfaction: CX is the sole predictor, so collinearity is irrelevant (VIF = 1).
- CX: In the current model CX is endogenous only to the five formative blocks, all with VIFs < 2 (see below).
- CX Antecedents (Predicting CX): Usability and Web design (U-WD), Fulfilment and Service Quality (F-SQ), Interactivity and Technology (I-T), Personalisation and Customisation (P-C) and Trust–Security–Privacy (T-S-P) all post VIFs well below 3 (1.241–1.954), indicating negligible collinearity.
6. Discussion
7. Conclusions
7.1. Theoretical Contributions
7.2. Managerial Implications
7.3. Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
CL | CS | CX | F-SQ | I-T | OI | P-C | T-S-P | U-WD | eWOM | |
---|---|---|---|---|---|---|---|---|---|---|
CX 1 | 0.71 | 0.81 | 0.953 | 0.618 | 0.612 | 0.446 | 0.344 | 0.559 | 0.589 | 0.074 |
CX 2 | 0.66 | 0.781 | 0.948 | 0.593 | 0.62 | 0.455 | 0.32 | 0.578 | 0.592 | 0.073 |
CX 3 | 0.672 | 0.779 | 0.93 | 0.547 | 0.651 | 0.435 | 0.377 | 0.534 | 0.589 | 0.091 |
T-S-P 1 | 0.569 | 0.596 | 0.545 | 0.551 | 0.423 | 0.396 | 0.175 | 0.923 | 0.443 | −0.08 |
T-S-P 2 | 0.517 | 0.567 | 0.545 | 0.507 | 0.409 | 0.387 | 0.131 | 0.924 | 0.385 | 0.079 |
T-S-P 3 | 0.527 | 0.568 | 0.518 | 0.544 | 0.386 | 0.387 | 0.127 | 0.878 | 0.401 | 0.039 |
F-SQ 1 | 0.501 | 0.596 | 0.546 | 0.879 | 0.461 | 0.419 | 0.263 | 0.484 | 0.442 | 0.029 |
F-SQ 2 | 0.488 | 0.574 | 0.522 | 0.841 | 0.388 | 0.33 | 0.134 | 0.511 | 0.363 | −0.015 |
F-SQ 3 | 0.514 | 0.544 | 0.488 | 0.786 | 0.429 | 0.451 | 0.193 | 0.455 | 0.41 | 0.165 |
I-T 1 | 0.433 | 0.47 | 0.485 | 0.457 | 0.73 | 0.308 | 0.436 | 0.373 | 0.404 | 0.149 |
I-T 2 | 0.479 | 0.568 | 0.657 | 0.486 | 0.987 | 0.445 | 0.381 | 0.434 | 0.61 | 0.144 |
CL 1 | 0.932 | 0.781 | 0.688 | 0.571 | 0.437 | 0.381 | 0.336 | 0.566 | 0.486 | 0.003 |
CL 2 | 0.948 | 0.795 | 0.712 | 0.583 | 0.502 | 0.366 | 0.337 | 0.559 | 0.496 | 0.081 |
CL 3 | 0.843 | 0.629 | 0.553 | 0.467 | 0.426 | 0.37 | 0.275 | 0.475 | 0.394 | 0.184 |
OI 1 | 0.32 | 0.358 | 0.359 | 0.381 | 0.349 | 0.89 | 0.196 | 0.355 | 0.451 | 0.073 |
OI 2 | 0.416 | 0.462 | 0.489 | 0.487 | 0.456 | 0.942 | 0.322 | 0.418 | 0.491 | 0.061 |
P-C 1 | 0.25 | 0.254 | 0.29 | 0.179 | 0.354 | 0.238 | 0.788 | 0.125 | 0.246 | 0.189 |
P-C 2 | 0.351 | 0.325 | 0.366 | 0.247 | 0.409 | 0.295 | 0.996 | 0.163 | 0.311 | 0.209 |
P-C 3 | 0.27 | 0.246 | 0.288 | 0.12 | 0.359 | 0.177 | 0.783 | 0.143 | 0.232 | 0.279 |
CS 1 | 0.79 | 0.946 | 0.799 | 0.631 | 0.553 | 0.439 | 0.319 | 0.598 | 0.56 | 0.047 |
CS 2 | 0.756 | 0.944 | 0.78 | 0.649 | 0.547 | 0.415 | 0.306 | 0.596 | 0.531 | 0.046 |
CS 3 | 0.767 | 0.953 | 0.802 | 0.664 | 0.563 | 0.438 | 0.301 | 0.6 | 0.541 | 0.048 |
U-WD 2 | 0.422 | 0.47 | 0.535 | 0.416 | 0.575 | 0.456 | 0.23 | 0.371 | 0.855 | 0.071 |
U-WD 3 | 0.493 | 0.527 | 0.556 | 0.471 | 0.566 | 0.491 | 0.259 | 0.463 | 0.889 | 0.03 |
eWOM 1 | 0.036 | 0.015 | 0.066 | 0.047 | 0.114 | 0.095 | 0.162 | −0.018 | 0.019 | 0.917 |
eWOM 3 | 0.136 | 0.08 | 0.088 | 0.082 | 0.169 | 0.028 | 0.242 | 0.025 | 0.053 | 0.877 |
U-WD 1 | 0.465 | 0.545 | 0.6 | 0.446 | 0.562 | 0.474 | 0.314 | 0.397 | 0.96 | 0.033 |
References
- Lemon, K.N.; Verhoef, P.C. Understanding Customer Experience Throughout the Customer Journey. J. Mark. 2016, 80, 69–96. [Google Scholar] [CrossRef]
- Verhoef, P.C.; Lemon, K.N.; Parasuraman, A.; Roggeveen, A.; Tsiros, M.; Schlesinger, L.A. Customer Experience Creation: Determinants, Dynamics and Management Strategies. J. Retail. 2009, 85, 31–41. [Google Scholar] [CrossRef]
- Pires, P.B.; Prisco, M.; Delgado, C.; Santos, J.D. A Conceptual Approach to Understanding the Customer Experience in E-Commerce: An Empirical Study. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 1943–1983. [Google Scholar] [CrossRef]
- Urdea, A.-M.; Constantin, C.P. Exploring the impact of customer experience on customer loyalty in e-commerce. Proc. Int. Conf. Bus. Excell. 2021, 15, 672–682. [Google Scholar] [CrossRef]
- Tiutiu, M.; Nemțeanu, S.; Dabija, D.-C.; Pelau, C. The impact of online customer service and store features on consumer experience and willingness to revisit their preferred online store. Humanit. Soc. Sci. Commun. 2025, 12, 1–13. [Google Scholar] [CrossRef]
- van Doorn, J.; Lemon, K.N.; Mittal, V.; Nass, S.; Pick, D.; Pirner, P.; Verhoef, P.C. Customer Engagement Behavior: Theoretical Foundations and Research Directions. J. Serv. Res. 2010, 13, 253–266. [Google Scholar] [CrossRef]
- Gupta, S.; Zeithaml, V. Customer Metrics and Their Impact on Financial Performance. Mark. Sci. 2006, 25, 718–739. [Google Scholar] [CrossRef]
- Jaakkola, E.; Alexander, M. The Role of Customer Engagement Behavior in Value Co-Creation. J. Serv. Res. 2014, 17, 247–261. [Google Scholar] [CrossRef]
- Payne, A.; Frow, P. Customer Relationship Management: From Strategy to Implementation. J. Mark. Manag. 2006, 22, 135–168. [Google Scholar] [CrossRef]
- Yin, W.; Xu, B. Effect of online shopping experience on customer loyalty in apparel business-to-consumer ecommerce. Text. Res. J. 2021, 91, 2882–2895. [Google Scholar] [CrossRef]
- Yi, M.; Chen, M.; Yang, J. Understanding the self-perceived customer experience and repurchase intention in live streaming shopping: Evidence from China. Humanit. Soc. Sci. Commun. 2024, 11, 1–13. [Google Scholar] [CrossRef]
- Vargo, S.L.; Lusch, R.F. Evolving to a New Dominant Logic for Marketing. J. Mark. 2004, 68, 1–17. [Google Scholar] [CrossRef]
- Vargo, S.L.; Lusch, R.F. Service-dominant logic: Continuing the evolution. J. Acad. Mark. Sci. 2008, 36, 1–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, Y.; Wei, K.-K.; Ramsey, E.; McCole, P.; Chen, H. Repurchase intention in B2C e-commerce—A relationship quality perspective. Inf. Manag. 2011, 48, 192–200. [Google Scholar] [CrossRef]
- Kim, M.-J.; Chung, N.; Lee, C.-K. The effect of perceived trust on electronic commerce: Shopping online for tourism products and services in South Korea. Tour. Manag. 2011, 32, 256–265. [Google Scholar] [CrossRef]
- Singh, N.; Misra, R.; Quan, W.; Radic, A.; Lee, S.-M.; Han, H. An analysis of consumer’s trusting beliefs towards the use of e-commerce platforms. Humanit. Soc. Sci. Commun. 2024, 11, 1–18. [Google Scholar] [CrossRef]
- Fernandes, T.; Pinto, T. Relationship quality determinants and outcomes in retail banking services: The role of customer experience. J. Retail. Consum. Serv. 2019, 50, 30–41. [Google Scholar] [CrossRef]
- Hui, G.; Al Mamun, A.; Reza, M.N.H.; Hussain, W. An empirical study on logistic service quality, customer satisfaction, and cross-border repurchase intention. Heliyon 2025, 11, e41156. [Google Scholar] [CrossRef]
- Bawack, R.E.; Wamba, S.F.; Carillo, K.D.A. Exploring the role of personality, trust, and privacy in customer experience performance during voice shopping: Evidence from SEM and fuzzy set qualitative comparative analysis. Int. J. Inf. Manag. 2021, 58, 102309. [Google Scholar] [CrossRef]
- Tan, G.W.-H.; Lee, V.-H.; Hew, J.-J.; Ooi, K.-B.; Wong, L.-W. The interactive mobile social media advertising: An imminent approach to advertise tourism products and services? Telemat. Inform. 2018, 35, 2270–2288. [Google Scholar] [CrossRef]
- Rahman, S.M.; Carlson, J.; Gudergan, S.P.; Wetzels, M.; Grewal, D. Perceived Omnichannel Customer Experience (OCX): Concept, measurement, and impact. J. Retail. 2022, 98, 611–632. [Google Scholar] [CrossRef]
- Zhang, X.; Park, Y.; Park, J.; Zhang, H. Demonstrating the influencing factors and outcomes of customer experience in omnichannel retail. J. Retail. Consum. Serv. 2024, 77, 103622. [Google Scholar] [CrossRef]
- Lim, Y.S.; Heng, P.C.; Ng, T.H.; Cheah, C.S. Customers’ online website satisfaction in online apparel purchase: A study of Generation Y in Malaysia. Asia Pac. Manag. Rev. 2016, 21, 74–78. [Google Scholar] [CrossRef]
- Sanchez-Franco, M.J.; Rondan-Cataluña, F.J. Virtual travel communities and customer loyalty: Customer purchase involvement and web site design. Electron. Commer. Res. Appl. 2010, 9, 171–182. [Google Scholar] [CrossRef]
- Hsu, T.-H.; Hung, L.-C.; Tang, J.-W. A hybrid ANP evaluation model for electronic service quality. Appl. Soft Comput. 2012, 12, 72–81. [Google Scholar] [CrossRef]
- Weir, C.S.; Anderson, J.N.; Jack, M.A. On the role of metaphor and language in design of third party payments in eBanking: Usability and quality. Int. J. Hum. Comput. Stud. 2006, 64, 770–784. [Google Scholar] [CrossRef]
- Huang, Z.; Benyoucef, M. The effects of social commerce design on consumer purchase decision-making: An empirical study. Electron. Commer. Res. Appl. 2017, 25, 40–58. [Google Scholar] [CrossRef]
- Lee, Y.; Kozar, K.A. Understanding of website usability: Specifying and measuring constructs and their relationships. Decis. Support Syst. 2012, 52, 450–463. [Google Scholar] [CrossRef]
- Lee-Geiller, S.; Lee, T.D. Using government websites to enhance democratic E-governance: A conceptual model for evaluation. Gov. Inf. Q. 2019, 36, 208–225. [Google Scholar] [CrossRef]
- Rodrigues, L.F.; Costa, C.J.; Oliveira, A. Gamification: A framework for designing software in e-banking. Comput. Hum. Behav. 2016, 62, 620–634. [Google Scholar] [CrossRef]
- Saleem, U.; Yi, S.; Bilal, M.; Topor, D.I.; Capusneanu, S. The impact of website quality on customer satisfaction and eWOM in online purchase intention: The moderating role of gender in risk-taking. Front. Psychol. 2022, 13, 945707. [Google Scholar] [CrossRef]
- Bleier, A.; Harmeling, C.M.; Palmatier, R.W. Creating Effective Online Customer Experiences. J. Mark. 2018, 83, 98–119. [Google Scholar] [CrossRef]
- Pandey, S.; Chawla, D. Online customer experience (OCE) in clothing e-retail: Exploring OCE dimensions and their impact on satisfaction and loyalty—Does gender matter? Int. J. Retail. Amp. Distrib. Manag. 2018, 46, 323–346. [Google Scholar] [CrossRef]
- Chaparro-Peláez, J.; Agudo-Peregrina, Á.F.; Pascual-Miguel, F.J. Conjoint analysis of drivers and inhibitors of e-commerce adoption. J. Bus. Res. 2016, 69, 1277–1282. [Google Scholar] [CrossRef]
- Klaus, P.P.; Maklan, S. Towards a Better Measure of Customer Experience. Int. J. Mark. Res. 2013, 55, 227–246. [Google Scholar] [CrossRef]
- Rose, S.; Clark, M.; Samouel, P.; Hair, N. Online Customer Experience in e-Retailing: An empirical model of Antecedents and Outcomes. J. Retail. 2012, 88, 308–322. [Google Scholar] [CrossRef]
- Williams, L.; Buoye, A.; Keiningham, T.L.; Aksoy, L. The practitioners’ path to customer loyalty: Memorable experiences or frictionless experiences? J. Retail. Consum. Serv. 2020, 57, 102215. [Google Scholar] [CrossRef]
- Thaichon, P.; Phau, I.; Weaven, S. Moving from multi-channel to Omni-channel retailing: Special issue introduction. J. Retail. Consum. Serv. 2022, 65, 102311. [Google Scholar] [CrossRef]
- Quach, S.; Barari, M.; Moudrý, D.V.; Quach, K. Service integration in omnichannel retailing and its impact on customer experience. J. Retail. Consum. Serv. 2022, 65, 102267. [Google Scholar] [CrossRef]
- Suh, T.; Moradi, M. Transferring in-store experience to online: An omnichannel strategy for DIY customers’ enhanced brand resonance and co-creative actions. J. Bus. Res. 2023, 168, 114237. [Google Scholar] [CrossRef]
- Moreira, A.; Alves, C.; Machado, J.; Santos, M.F. An Overview of Omnichannel Interaction in Health Care Services. Mayo Clin. Proc. Digit. Health 2023, 1, 77–93. [Google Scholar] [CrossRef]
- Shi, S.; Wang, Y.; Chen, X.; Zhang, Q. Conceptualization of omnichannel customer experience and its impact on shopping intention: A mixed-method approach. Int. J. Inf. Manag. 2020, 50, 325–336. [Google Scholar] [CrossRef]
- Abadie, A.; Roux, M.; Chowdhury, S.; Dey, P. Interlinking organisational resources, AI adoption and omnichannel integration quality in Ghana’s healthcare supply chain. J. Bus. Res. 2023, 162, 113866. [Google Scholar] [CrossRef]
- Sharma, N.; Fatima, J.K. Influence of perceived value on omnichannel usage: Mediating and moderating roles of the omnichannel shopping habit. J. Retail. Consum. Serv. 2024, 77, 103627. [Google Scholar] [CrossRef]
- Khalid, B. Evaluating customer perspectives on omnichannel shopping satisfaction in the fashion retail sector. Heliyon 2024, 10, e36027. [Google Scholar] [CrossRef]
- Furquim, T.S.G.; Da Veiga, C.P.; Veiga, C.R.P.d.; Silva, W.V.d. The different phases of the omnichannel consumer buying journey: A systematic literature review and future research directions. J. Theor. Appl. Electron. Commer. Res. 2022, 18, 79–104. [Google Scholar] [CrossRef]
- Liu, H.; Roehl, W.S. Do virtual tours really enhance customer satisfaction with physical experiences? A quasi-experimental study on Airbnb. J. Hosp. Tour. Manag. 2025, 62, 188–195. [Google Scholar] [CrossRef]
- Cattapan, T.; Pongsakornrungsilp, S. Impact of omnichannel integration on Millennials’ purchase intention for fashion retailer. Cogent Bus. Manag. 2022, 9, 2087460. [Google Scholar] [CrossRef]
- Garay Gallastegui, L.M.; Reier Forradellas, R. FASECO: A Framework for Advanced Support of E-Commerce and digital transformation in SMEs with natural language processing-enhanced analysis. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100412. [Google Scholar] [CrossRef]
- Liu, H. Omnichannel Retailing: Mobile Channel Adoption and Digital Discounts. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 2019. [Google Scholar]
- Yang, Q.; Wang, Z.-S.; Feng, K.; Tang, Q.-Y. Investigating the crucial role of logistics service quality in customer satisfaction for fresh e-commerce: A mutually validating method based on SERVQUAL and service encounter theory. J. Retail. Consum. Serv. 2024, 81, 103940. [Google Scholar] [CrossRef]
- Nguyen, H.N. Channel Integration Quality, Customer Experience and Patronage in Omnichannel Retailing. J. Distrib. Sci. 2021, 19, 23–32. [Google Scholar] [CrossRef]
- Darboe, B. Towards Excelente Customer Experience in E-Commerce. Master’s Thesis, Aalto University School of Business, Espoo, Finland, 2022. [Google Scholar]
- Kawa, A.; Zdrenka, W. Logistics value in e-commerce and its impact on customer satisfaction, loyalty and online retailers’ performance. Int. J. Logist. Manag. 2023, 35, 577–600. [Google Scholar] [CrossRef]
- Koronaki, E.; Vlachvei, A.; Panopoulos, A. Shaping the Online Customer Experience Through Website Elements: An Integrated Framework. In Proceedings of the Advances in Empirical Economic Research, Madrid, Spain, 7–9 July 2022; Springer: Cham, Switzerland; pp. 963–975. [Google Scholar]
- Herhausen, D.; Miočević, D.; Morgan, R.E.; Kleijnen, M.H.P. The digital marketing capabilities gap. Ind. Mark. Manag. 2020, 90, 276–290. [Google Scholar] [CrossRef]
- Muthaffar, A.; Vilches-Montero, S. Empowering retailers: A bounded rationality perspective to enhancing omnichannel journey satisfaction. J. Retail. Consum. Serv. 2023, 75, 103536. [Google Scholar] [CrossRef]
- Hagan, D.; Jahankhani, H.; Broc, L.; Jamal, A. The Role of Social Media, Digitisation of Marketing, and AI on Brand Awareness; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Wang, C.; Ahmad, S.F.; Bani Ahmad Ayassrah, A.Y.A.; Awwad, E.M.; Irshad, M.; Ali, Y.A.; Al-Razgan, M.; Khan, Y.; Han, H. An empirical evaluation of technology acceptance model for Artificial Intelligence in E-commerce. Heliyon 2023, 9, e18349. [Google Scholar] [CrossRef] [PubMed]
- Ziaie, A.; ShamiZanjani, M.; Manian, A. Systematic review of digital value propositions in the retail sector: New approach for digital experience study. Electron. Commer. Res. Appl. 2021, 47, 101053. [Google Scholar] [CrossRef]
- McLean, G.; Al-Nabhani, K.; Wilson, A. Developing a Mobile Applications Customer Experience Model (MACE)-Implications for Retailers. J. Bus. Res. 2018, 85, 325–336. [Google Scholar] [CrossRef]
- ElMaraghy, H.; Schuh, G.; ElMaraghy, W.; Piller, F.; Schönsleben, P.; Tseng, M.; Bernard, A. Product variety management. CIRP Ann. 2013, 62, 629–652. [Google Scholar] [CrossRef]
- Yetis, H.; Karakose, M.; Baygin, N. Blockchain-based mass customization framework using optimized production management for industry 4.0 applications. Eng. Sci. Technol. Int. J. 2022, 36, 101151. [Google Scholar] [CrossRef]
- Hara, T.; Arai, T. Encourage non-designer’s design: Continuous value creation in manufacturing products and services. CIRP Ann. 2012, 61, 171–174. [Google Scholar] [CrossRef]
- Nikhashemi, S.R.; Knight, H.H.; Nusair, K.; Liat, C.B. Augmented reality in smart retailing: A (n) (A) Symmetric Approach to continuous intention to use retail brands’ mobile AR apps. J. Retail. Consum. Serv. 2021, 60, 102464. [Google Scholar] [CrossRef]
- Tseng, M.M.; Jiao, R.J.; Wang, C. Design for mass personalization. CIRP Ann. 2010, 59, 175–178. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, L.; Ye, Q.; Liao, Q. Effects of customization and personalization affordances on perceived value and continuance intention of smartwatch use. Technol. Forecast. Soc. Change 2023, 194, 122752. [Google Scholar] [CrossRef]
- Pallant, J.L.; Karpen, I.O.; Sands, S.J. What drives consumers to customize products? The mediating role of brand experience. J. Retail. Consum. Serv. 2022, 64, 102773. [Google Scholar] [CrossRef]
- de Blok, C.; Meijboom, B.; Luijkx, K.; Schols, J. The human dimension of modular care provision: Opportunities for personalization and customization. Int. J. Prod. Econ. 2013, 142, 16–26. [Google Scholar] [CrossRef]
- Váncza, J.; Monostori, L.; Lutters, D.; Kumara, S.R.; Tseng, M.; Valckenaers, P.; Van Brussel, H. Cooperative and responsive manufacturing enterprises. CIRP Ann. 2011, 60, 797–820. [Google Scholar] [CrossRef]
- Rust, R.T.; Kannan, P.K.; Ramachandran, A.D. E-Service: The Revenue Expansion Path to E-Commerce Profitability. Adv. Comput. 2005, 64, 159–193. [Google Scholar] [CrossRef]
- Chen, B. The effect of attribute originality on consumers’ adoption intention of customization: The role of construal level. J. Retail. Consum. Serv. 2020, 55, 102116. [Google Scholar] [CrossRef]
- Chung, K.C.; Tan, P.J.B. Understanding the dynamics of social interaction in SIoT: Human-machine engagement. Internet Things 2024, 28, 101337. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.; Baek, T.H.; Kim, C. ChatGPT personalized and humorous recommendations. Ann. Tour. Res. 2025, 110, 103857. [Google Scholar] [CrossRef]
- Park, S.; Gim, J.; Kim, S.I.; Kim, H. From guests to Owners: The power of reactive personalization in shaping perceived ownership in hotels. J. Hosp. Tour. Manag. 2025, 101300. [Google Scholar] [CrossRef]
- An, G.K.; Ngo, T.T.A. AI-powered personalized advertising and purchase intention in Vietnam’s digital landscape: The role of trust, relevance, and usefulness. J. Open Innov. Technol. Mark. Complex. 2025, 11, 100580. [Google Scholar] [CrossRef]
- Madhuri, D.; Reddy, S.M.; Kumar, B.R.; Manchem, S. Exploring the Role of Personalization in E-commerce: Impacts on Consumer Trust and Purchase Intentions. Eur. Econ. Lett. 2024, 14, 907–919. [Google Scholar] [CrossRef]
- Li, Y.; Deng, X.; Hu, X.; Liu, J. The Effects of E-Commerce Recommendation System Transparency on Consumer Trust: Exploring Parallel Multiple Mediators and a Moderator. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 2630–2649. [Google Scholar] [CrossRef]
- Bansal, G.; Zahedi, F.M.; Gefen, D. The role of privacy assurance mechanisms in building trust and the moderating role of privacy concern. Eur. J. Inf. Syst. 2017, 24, 624–644. [Google Scholar] [CrossRef]
- Samhale, K. The impact of trust in the internet of things for health on user engagement. Digit. Bus. 2022, 2, 100021. [Google Scholar] [CrossRef]
- Paluch, S.; Wünderlich, N.V. Contrasting risk perceptions of technology-based service innovations in inter-organizational settings. J. Bus. Res. 2016, 69, 2424–2431. [Google Scholar] [CrossRef]
- Riaz, H.M.; Ahmed, H.; Jibril, A.B. Reassessing customer trust and privacy concerns in omnichannel customer experience. Cogent Bus. Manag. 2024, 1, 2410405. [Google Scholar] [CrossRef]
- Liao, C.; Liu, C.-C.; Chen, K. Examining the impact of privacy, trust and risk perceptions beyond monetary transactions: An integrated model. Electron. Commer. Res. Appl. 2011, 10, 702–715. [Google Scholar] [CrossRef]
- Bonsón Ponte, E.; Carvajal-Trujillo, E.; Escobar-Rodríguez, T. Influence of trust and perceived value on the intention to purchase travel online: Integrating the effects of assurance on trust antecedents. Tour. Manag. 2015, 47, 286–302. [Google Scholar] [CrossRef]
- Cases, A.-S.; Fournier, C.; Dubois, P.-L.; Tanner, J.F. Web Site spill over to email campaigns: The role of privacy, trust and shoppers’ attitudes. J. Bus. Res. 2010, 63, 993–999. [Google Scholar] [CrossRef]
- Ruotsalainen, P.S. Privacy, Trust and Security in Two-Sided Markets; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Quintus, M.; Mayr, K.; Hofer, K.; Chiu, Y. Managing consumer trust in e-commerce: Evidence from advanced versus emerging markets. Int. J. Retail Distrib. Manag. 2024, 52, 1038–1056. [Google Scholar] [CrossRef]
- Soleimani, M. Buyers’ trust and mistrust in e-commerce platforms: A synthesizing literature review. Inf. Syst. E-Bus. Manag. 2021, 20, 57–78. [Google Scholar] [CrossRef]
- Handoyo, S. Purchasing in the digital age: A meta-analytical perspective on trust, risk, security, and e-WOM in e-commerce. Heliyon 2024, 10, 29714. [Google Scholar] [CrossRef] [PubMed]
- Alshare, K.A.; Moqbel, M.; Garni, M.A.A. The impact of trust, security, and privacy on individual’s use of the internet for online shopping and social media: A multi-cultural study. Int. J. Mob. Commun. 2019, 17, 513–536. [Google Scholar] [CrossRef]
- Saeed, S. A Customer-Centric View of E-Commerce Security and Privacy. Appl. Sci. 2023, 13, 1020. [Google Scholar] [CrossRef]
- Thaichon, P.; Lobo, A.; Prentice, C.; Quach, T.N. The development of service quality dimensions for internet service providers: Retaining customers of different usage patterns. J. Retail. Consum. Serv. 2014, 21, 1047–1058. [Google Scholar] [CrossRef]
- Isa, A.M.; Saud, M.B.; Ismail, M.D. Examining reasons for post-purchase satisfaction in buying local brands: When local meets local. Asia Pac. Manag. Rev. 2016, 21, 48–61. [Google Scholar] [CrossRef]
- Wu, H.-C.; Cheng, C.-C. Relationships between technology attachment, experiential relationship quality, experiential risk and experiential sharing intentions in a smart hotel. J. Hosp. Tour. Manag. 2018, 37, 42–58. [Google Scholar] [CrossRef]
- Yingfei, Y.; Mengze, Z.; Ki-Hyung, B. The Nexus of Service Quality, Customer Experience, and Customer Commitment: The Neglected Mediating Role of Corporate Image. Front. Psychol. 2022, 13, 917284. [Google Scholar] [CrossRef]
- Meng, J.; Elliott, K.M. Predictors of relationship quality for luxury restaurants. J. Retail. Consum. Serv. 2008, 15, 509–515. [Google Scholar] [CrossRef]
- Shahin, M.; Chen, F.F.; Hosseinzadeh, A. Harnessing customized AI to create voice of customer via GPT3.5. Adv. Eng. Inform. 2024, 61, 102462. [Google Scholar] [CrossRef]
- Nanda, P.; Patnaik, S. A multi-agent coalition-based approach for order fulfilment in e-commerce. Decis. Anal. J. 2023, 7, 100227. [Google Scholar] [CrossRef]
- Chen, R.; Liu, H.; Tan, K.H.; Pang, G.; Duan, K. Enhancing order fulfilment services on social livestreaming commerce: An evaluation of logistics experience scores. Int. J. Prod. Econ. 2025, 287, 109698. [Google Scholar] [CrossRef]
- Cannas, V.G.; Gosling, J.; Pero, M.; Rossi, T. Determinants for order-fulfilment strategies in engineer-to-order companies: Insights from the machinery industry. Int. J. Prod. Econ. 2020, 228, 107743. [Google Scholar] [CrossRef]
- Gensler, S.; Rangaswamy, A. An emerging future for digital marketing: From products and services to sequenced solutions. J. Bus. Res. 2025, 190, 115230. [Google Scholar] [CrossRef]
- Mohammadi, S.; Al-e-Hashem, S.M.J.M.; Rekik, Y. An integrated production scheduling and delivery route planning with multi-purpose machines: A case study from a furniture manufacturing company. Int. J. Prod. Econ. 2020, 219, 347–359. [Google Scholar] [CrossRef]
- Giraud-Carrier, F.C.; Cosgrove, C.; Qahri-Saremi, H. How Does Supplier Integration Improve Firm Performance? Insights from a Meta-Analytic Structural Equation Modeling Study. J. Purch. Supply Manag. 2025, 101055. [Google Scholar] [CrossRef]
- Hartmann, J.; Germain, R. Understanding the relationships of integration capabilities, ecological product design, and manufacturing performance. J. Clean. Prod. 2015, 92, 196–205. [Google Scholar] [CrossRef]
- Liang, J.; Zhou, X.; Yuan, C.; Chen, Y. Optimization of pharmacy membership management system based on big data: Sleeping member activation and awakening methods using ANN modeling. Heliyon 2024, 10, e39482. [Google Scholar] [CrossRef]
- Aljohani, K. The Role of Last-Mile Delivery Quality and Satisfaction in Online Retail Experience: An Empirical Analysis. Sustainability 2024, 16, 4743. [Google Scholar] [CrossRef]
- Rashid, D.A.; Rasheed, D.R. Logistics Service Quality and Product Satisfaction in E-Commerce. Sage Open 2024, 14, 21582440231224250. [Google Scholar] [CrossRef]
- Cai, L.; Liu, Y.; Lai, P.-L.; Zhu, X.; Yuen, K.F.; Wang, X. Assessing Logistics Service Quality in Omni-Channel Retailing Through Integrated SERVQUAL and Kano Model. Systems 2024, 12, 466. [Google Scholar] [CrossRef]
- Tseng, S.M. The role of service recovery in omnichannel integration services success model. J. Enterp. Inf. Manag. 2024, 37, 1322–1347. [Google Scholar] [CrossRef]
- Monoarfa, T.A.; Sumarwan, U.; Suroso, A.I.; Wulandari, R. The crucial role of e-logistic service quality to integrated theories to predict continuance intention on fresh produce e-commerce. Cogent Bus. Manag. 2024, 11, 2379569. [Google Scholar] [CrossRef]
- Sorkun, M.F.; Hüseyinoğlu, I.Ö.Y.; Börühan, G. Omni-channel capability and customer satisfaction: Mediating roles of flexibility and operational logistics service quality. Int. J. Retail Amp. Distrib. Manag. 2020, 48, 629–648. [Google Scholar] [CrossRef]
- Obeidat, Z.M.; AlGharabat, R.S.; Alalwan, A.A.; Xiao, S.H.; Dwivedi, Y.K.; Rana, N.P. Narcissism, interactivity, community, and online revenge behavior: The moderating role of social presence among Jordanian consumers. Comput. Hum. Behav. 2020, 104, 106170. [Google Scholar] [CrossRef]
- Avidar, R. The responsiveness pyramid: Embedding responsiveness and interactivity into public relations theory. Public Relat. Rev. 2013, 39, 440–450. [Google Scholar] [CrossRef]
- Stein, A.; Ramaseshan, B. Towards the identification of customer experience touch point elements. J. Retail. Consum. Serv. 2016, 30, 8–19. [Google Scholar] [CrossRef]
- Yoo, C.W.; Kim, Y.J.; Sanders, G.L. The impact of interactivity of electronic word of mouth systems and E-Quality on decision support in the context of the e-marketplace. Inf. Manag. 2015, 52, 496–505. [Google Scholar] [CrossRef]
- Wilson-Jeanselme, M.; Reynolds, J. Growth without profit: Explaining the internet transaction profitability paradox. J. Retail. Consum. Serv. 2005, 12, 165–177. [Google Scholar] [CrossRef]
- Stanko, M.A.; Bonner, J.M. Projective customer competence: Projecting future customer needs that drive innovation performance. Ind. Mark. Manag. 2013, 42, 1255–1265. [Google Scholar] [CrossRef]
- Zheng, L.; Li, Y. Customer journey design in omnichannel retailing: Examining the effect of autonomy-competence-relatedness in brand relationship building. J. Retail. Consum. Serv. 2024, 78, 103776. [Google Scholar] [CrossRef]
- Rane, N.; Choudhary, S.; Rane, J. Metaverse for Enhancing Customer Loyalty: Effective Strategies to Improve Customer Relationship, Service, Engagement, Satisfaction, and Experience. SSRN Electron. J. 2023, 1–26. [Google Scholar] [CrossRef]
- Eggenschwiler, M.; Linzmajer, M.; Roggeveen, A.L.; Rudolph, T. Retailing in the metaverse: A framework of managerial considerations for success. J. Retail. Consum. Serv. 2024, 79, 103791. [Google Scholar] [CrossRef]
- Melnyk, A. Marketing Evolution: From Traditional to Web 3.0. Balt. J. Econ. Stud. 2024, 10, 273–281. [Google Scholar] [CrossRef]
- Silva, C.D.S.P.R.D. The Impact of Augmented Reality for Brand Activation on Consumer Brand Engagement: The Role of Gamification on Entertainment Events. Master’s Thesis, ISCTE–University Institute of Lisbon, Lisboa, Portugal, 2024. [Google Scholar]
- Li, C.H.; Chan, O.L.K.; Chow, Y.T.; Zhang, X.; Tong, P.S.; Li, S.P.; Ng, H.Y.; Keung, K.L. Evaluating the Effectiveness of Digital Content Marketing Under Mixed Reality Training Platform on the Online Purchase Intention. Front. Psychol. 2022, 13, 881019. [Google Scholar] [CrossRef] [PubMed]
- Aswathy, A.; Jacob, P.M.; Rajesh, K.; Soundarraj, P.L.; Pagare, S.R.; Powar, K.S. Uncovering The Relationships Between Customer Experience, Emotional Intelligence and Loyalty in E-Commerce. Econ. Sci. 2025, 21, 461–469. [Google Scholar] [CrossRef]
- Zeng, N.; Jiang, L.; Vignali, G.; Ryding, D. Customer Interactive Experience in Luxury Retailing: The Application of AI-Enabled Chatbots in the Interactive Marketing. In The Palgrave Handbook of Interactive Marketing; Wang, E.C.L., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 785–805. [Google Scholar]
- Lacap, J.P.G.; Ricafrente, M.I.L.; Caponpon, J.; Medina, R.; Raneses, R.A.; Centeno, Z.; Syed Annuar, S.N. How Does Gamification in an E-Commerce Platform Drive Customer Experience? The Mediating Roles of Perceived Enjoyment and Brand Engagement. In Current and Future Trends on Intelligent Technology Adoption; Al-Sharafi, E.M.A., Al-Emran, M., Tan, G.W.H., Ooi, K.B., Eds.; Studies in Computational Intelligence; Springer Nature: Cham, Switzerland, 2023; Volume 1, pp. 457–477. [Google Scholar]
- Siqueira, J.R.; ter Horst, E.; Molina, G.; Losada, M.; Mateus, M.A. A Bayesian examination of the relationship of internal and external touchpoints in the customer experience process across various service environments. J. Retail. Consum. Serv. 2020, 53, 102009. [Google Scholar] [CrossRef]
- Moriuchi, E.; Landers, V.M.; Colton, D.; Hair, N. Engagement with chatbots versus augmented reality interactive technology in e-commerce. J. Strateg. Mark. 2020, 29, 375–389. [Google Scholar] [CrossRef]
- Kim, M. Unveiling the e-Servicescape of ChatGPT: Exploring User Psychology and Engagement in AI-Powered Chatbot Experiences. Behav. Sci. 2024, 14, 558. [Google Scholar] [CrossRef] [PubMed]
- Faganel, A.; Pačarić, F.; Rižnar, I. The Impact of Gamification on Slovenian Consumers’ Online Shopping. Adm. Sci. 2024, 14, 86. [Google Scholar] [CrossRef]
- Ernestivita, G.; Subagyo, S.; Laras, T. Implementation of Chatbot and Auto Promote in Improving Customer Experience on E-Commerce Sites. Int. J. Res. Rev. 2024, 11, 359–364. [Google Scholar] [CrossRef]
- Gallery, C. Retail innovation 2: The future of online selling. In Em Fashion Business and Digital Transformation; Gallery, C., Conlon, J., Eds.; Routledge: Abingdon-on-Thames, UK, 2024. [Google Scholar]
- Kundavaram, R.R.; Roberts, C.; Onteddu, A.R.; Devarapu, K. Sculpting Dynamic Intelligence in E-Commerce Vendor-Customer Relations with Advanced Big Data Analytics Integration. Am. J. Trade Policy 2024, 11, 49–66. [Google Scholar] [CrossRef]
- Bogoslov, I.A.; Stoica, E.A.; Georgescu, M.R.; Lungu, A.E. Gamification in E-Commerce: Advantages, Challenges, and Future Trends. Rev. Econ. 2023, 75, 17–33. [Google Scholar] [CrossRef]
- Singh, R.; Söderlund, M. Extending the experience construct: An examination of online grocery shopping. Eur. J. Mark. 2020, 54, 2419–2446. [Google Scholar] [CrossRef]
- Ali, F.; Kim, W.G.; Li, J.; Jeon, H.-M. Make it delightful: Customers’ experience, satisfaction and loyalty in Malaysian theme parks. J. Destin. Mark. Manag. 2018, 7, 1–11. [Google Scholar] [CrossRef]
- Harris, L.C.; Goode, M.M.H. The four levels of loyalty and the pivotal role of trust: A study of online service dynamics. J. Retail. 2004, 80, 139–158. [Google Scholar] [CrossRef]
- Dick, A.S.; Basu, K. Customer loyalty: Toward an integrated conceptual framework. J. Acad. Mark. Sci. 1994, 22, 99–113. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Martell, M. Does attitudinal loyalty influence behavioral loyalty? A theoretical and empirical study. J. Retail. Consum. Serv. 2007, 14, 35–44. [Google Scholar] [CrossRef]
- Manyanga, W.; Makanyeza, C.; Muranda, Z. The effect of customer experience, customer satisfaction and word of mouth intention on customer loyalty: The moderating role of consumer demographics. Cogent Bus. Manag. 2022, 9, 2082015. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Pandey, R.; Rishi, B. Electronic word of mouth (eWOM) research—A comparative bibliometric analysis and future research insight. J. Hosp. Tour. Insights 2022, 6, 404–424. [Google Scholar] [CrossRef]
- Hennig-Thurau, T.; Gwinner, K.P.; Walsh, G.; Gremler, D.D. Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the Internet? J. Interact. Mark. 2004, 18, 38–52. [Google Scholar] [CrossRef]
- Nhi, B.T.; Nam, T.T.; Thủy, N.T.; Oanh, N.K.; Thanh Trang, L.T. Effects of Customer Perceived Value, Brand Experience on Brand Attachment, Brand Satisfaction, and Word-of-Mouth. Ho Chi Minh City Open Univ. J. Sci. Econ. Bus. Adm. 2023, 13, 39–53. [Google Scholar] [CrossRef]
- Anderson, E.W. Customer Satisfaction and Word of Mouth. J. Serv. Res. 1998, 1, 5–17. [Google Scholar] [CrossRef]
- Taheri, B.; Chalmers, D.; Wilson, J.; Arshed, N. Would you really recommend it? Antecedents of word-of-mouth in medical tourism. Tour. Manag. 2021, 83, 104209. [Google Scholar] [CrossRef]
- Capatina, A.; Micu, A.; Micu, A.E.; Bouzaabia, R.; Bouzaabia, O. Country-based comparison of accommodation brands in social media: An fsQCA approach. J. Bus. Res. 2018, 89, 235–242. [Google Scholar] [CrossRef]
- Alshawawreh, A.R.E.; Liébana-Cabanillas, F.; Blanco-Encomienda, F.J. Impact of big data analytics on telecom companies’ competitive advantage. Technol. Soc. 2024, 76, 102459. [Google Scholar] [CrossRef]
- Moliner-Tena, M.A.; Monferrer-Tirado, D.; Estrada-Guillen, M.; Vidal-Meliá, L. Memorable customer experiences and autobiographical memories: From service experience to word of mouth. J. Retail. Consum. Serv. 2023, 72, 103290. [Google Scholar] [CrossRef]
- Bang, D.; Jang, S. Decoding the information quantity-quality paradox: How eWOM volume influences consumption value uncertainties. Int. J. Hosp. Manag. 2024, 120, 103769. [Google Scholar] [CrossRef]
- Kim, Y.; Wang, Q.; Roh, T. Do information and service quality affect perceived privacy protection, satisfaction, and loyalty? Evidence from a Chinese O2O-based mobile shopping application. Telemat. Inform. 2021, 56, 101483. [Google Scholar] [CrossRef]
- Aboulnasr, K.; Tran, G.A. Is Love Really Blind? The Effect of Emotional Brand Attachment on the Perceived Risk of Really New Products. J. Prod. Brand Manag. 2019, 29, 81–96. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook; Springer International Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Rigdon, E.E.; Becker, J.-M.; Sarstedt, M. Factor Indeterminacy as Metrological Uncertainty: Implications for Advancing Psychological Measurement. Multivar. Behav. Res. 2019, 54, 429–443. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F., Jr.; Matthews, L.M.; Matthews, R.L.; Sarstedt, M. PLS-SEM or CB-SEM: Updated guidelines on which method to use. Int. J. Multivar. Data Anal. 2017, 1, 107–123. [Google Scholar] [CrossRef]
- Chou, J.-S.; Hong, J.-H. Assessing the impact of quality determinants and user characteristics on successful enterprise resource planning project implementation. J. Manuf. Syst. 2013, 32, 792–800. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Smith, D.; Reams, R.; Hair, J.F. Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. J. Fam. Bus. Strategy 2014, 5, 105–115. [Google Scholar] [CrossRef]
- Jarvis, C.B.; MacKenzie, S.B.; Podsakoff, P.M. A critical review of construct indicators and measurement model misspecification in marketing and consumer research. J. Consum. Res. 2003, 30, 199–218. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); SAGE: Thousand Oaks, CA, USA, 2022. [Google Scholar]
- Kurilovas, E.; Kubilinskiene, S. Lithuanian case study on evaluating suitability, acceptance and use of IT tools by students—An example of applying Technology Enhanced Learning Research methods in Higher Education. Comput. Hum. Behav. 2020, 107, 106274. [Google Scholar] [CrossRef]
- Chang, T.-M.; Kao, H.-Y.; Wu, J.-H.; Hsiao, K.-W.; Chan, T.-F. Integrated ontology-based approach with navigation and content representation for health care website design. Comput. Hum. Behav. 2022, 128, 107119. [Google Scholar] [CrossRef]
- Pee, L.G.; Jiang, J.; Klein, G. Signaling effect of website usability on repurchase intention. Int. J. Inf. Manag. 2018, 39, 228–241. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, K.; Zheng, B. Is in-store mobile usage a toxic to customer purchase? A multigroup analysis of customer type. Electron. Commer. Res. Appl. 2023, 61, 101306. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, C.; Shen, X.-L.; Wang, N. When digitalized customers meet digitalized services: A digitalized social cognitive perspective of omnichannel service usage. Int. J. Inf. Manag. 2020, 54, 102200. [Google Scholar] [CrossRef]
- Slatten, T.; Mutonyi, B.R.; Lien, G. Does organizational vision really matter? An empirical examination of factors related to organizational vision integration among hospital employees. BMC Health Serv. Res. 2021, 21, 483. [Google Scholar] [CrossRef] [PubMed]
- Sarmento, M.; Simões, C.; Lages, L.F. From organizational ambidexterity to organizational performance: The mediating role of value co-creation. Ind. Mark. Manag. 2024, 118, 175–188. [Google Scholar] [CrossRef]
- Huang, C.D.; Goo, J.; Nam, K.; Yoo, C.W. Smart tourism technologies in travel planning: The role of exploration and exploitation. Inf. Manag. 2017, 54, 757–770. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Benitez-Amado, J. How information technology influences environmental performance: Empirical evidence from China. Int. J. Inf. Manag. 2015, 35, 160–170. [Google Scholar] [CrossRef]
- Lee, K.; Yoo, J.; Choi, M.; Zo, H.; Ciganek, A.P. Does External Knowledge Sourcing Enhance Market Performance? Evidence from the Korean Manufacturing Industry. PLoS ONE 2016, 11, e0168676. [Google Scholar] [CrossRef]
- Marimuthu, M. Young mothers’ acceptance of herbal food supplements: Centred on preventive health behaviour for children. J. Retail. Consum. Serv. 2019, 51, 311–319. [Google Scholar] [CrossRef]
- Cheung, C.M.K.; Shen, X.-L.; Lee, Z.W.Y.; Chan, T.K.H. Promoting sales of online games through customer engagement. Electron. Commer. Res. Appl. 2015, 14, 241–250. [Google Scholar] [CrossRef]
- Chai, K.-H.; Baudelaire, C. Understanding the energy efficiency gap in Singapore: A Motivation, Opportunity, and Ability perspective. J. Clean. Prod. 2015, 100, 224–234. [Google Scholar] [CrossRef]
- Ettis, S.A.; Sellami, A. “I’ll do it for myself”: Enhancing customer value through online product customization experience. J. Retail. Consum. Serv. 2025, 82, 104143. [Google Scholar] [CrossRef]
- Raza-Ullah, T. When does (not) a coopetitive relationship matter to performance? An empirical investigation of the role of multidimensional trust and distrust. Ind. Mark. Manag. 2021, 96, 86–99. [Google Scholar] [CrossRef]
- Mpinganjira, M. Precursors of trust in virtual health communities: A hierarchical investigation. Inf. Manag. 2018, 55, 686–694. [Google Scholar] [CrossRef]
- Alsaad, A.; Mohamad, R.; Ismail, N.A. The moderating role of trust in business to business electronic commerce (B2B EC) adoption. Comput. Hum. Behav. 2017, 68, 157–169. [Google Scholar] [CrossRef]
- Wang, W.-T.; Wang, Y.-S.; Liu, E.-R. The stickiness intention of group-buying websites: The integration of the commitment–trust theory and e-commerce success model. Inf. Manag. 2016, 53, 625–642. [Google Scholar] [CrossRef]
- Gao, Y.; Chang, Y.; Yang, T.; Yu, Z. Consumer acceptance of social robots in domestic settings: A human-robot interaction perspective. J. Retail. Consum. Serv. 2025, 82, 104075. [Google Scholar] [CrossRef]
- Venkatesh, V.; Hoehle, H.; Aloysius, J.A.; Nikkhah, H.R. Being at the cutting edge of online shopping: Role of recommendations and discounts on privacy perceptions. Comput. Hum. Behav. 2021, 121, 106785. [Google Scholar] [CrossRef]
- Sharma, R.; Mishra, R. Investigating the role of intermediaries in adoption of public access outlets for delivery of e-Government services in developing countries: An empirical study. Gov. Inf. Q. 2017, 34, 658–679. [Google Scholar] [CrossRef]
- Robaina-Calderín, L.; Martín-Santana, J.D.; Melián-Alzola, L. Prosocial customer in the public sector: A PLS-SEM analysis applied to blood donation (active donors). Socio-Econ. Plan. Sci. 2023, 86, 101507. [Google Scholar] [CrossRef]
- Blut, M. E-Service Quality: Development of a Hierarchical Model. J. Retail. 2016, 92, 500–517. [Google Scholar] [CrossRef]
- Alghamdi, S.Y.; Kaur, S.; Qureshi, K.M.; Almuflih, A.S.; Almakayeel, N.; Alsulamy, S.; Qureshi, M.R.N. Antecedents for online food delivery platform leading to continuance usage intention via e-word-of-mouth review adoption. PLoS ONE 2023, 18, e0290247. [Google Scholar] [CrossRef]
- Kankanhalli, A.; Lee, O.-K.; Lim, K.H. Knowledge reuse through electronic repositories: A study in the context of customer service support. Inf. Manag. 2011, 48, 106–113. [Google Scholar] [CrossRef]
- Chowdhury, M.M.H.; Quaddus, M. Supply chain resilience: Conceptualization and scale development using dynamic capability theory. Int. J. Prod. Econ. 2017, 188, 185–204. [Google Scholar] [CrossRef]
- Mikulić, J. Choosing the right fit: A practical guide to selecting measurement models for tourism constructs. Tour. Manag. 2024, 103, 104917. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis; Cengage: Boston, MA, USA, 2019. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Guenther, P.; Guenther, M.; Ringle, C.M.; Zaefarian, G.; Cartwright, S. Improving PLS-SEM use for business marketing research. Ind. Mark. Manag. 2023, 111, 127–142. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Diamantopoulos, A.; Siguaw, J.A. Formative Versus Reflective Indicators in Organizational Measure Development: A Comparison and Empirical Illustration. Br. J. Manag. 2006, 17, 263–282. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Diamantopoulos, A.; Winklhofer, H.M. Index Construction with Formative Indicators: An Alternative to Scale Development. J. Mark. Res. 2001, 38, 269–277. [Google Scholar] [CrossRef]
- Wang, Y.-B.; Chen, P.Y. Official online brand stores or online marketplaces? exploring innovation in consumer intentions. J. Innov. Knowl. 2024, 9, 100541. [Google Scholar] [CrossRef]
- Wang, P.; Li, K.; Du, Q.; Wang, J. Customer experience in AI-enabled products: Scale development and validation. J. Retail. Consum. Serv. 2024, 76, 103578. [Google Scholar] [CrossRef]
Research Hypothesis | Authors |
---|---|
H1: Website usability and design are positively associated with customer experience (U-WD → CX) | [3,31,33] |
H2: Omnichannel integration and consistency across channels are positively associated with customer experience (OI → CX) | [21,52,53,54] |
H3: Personalisation and customisation are positively associated with customer experience (P-C → CX) | [21,55,77] |
H4: The perception of trust, security and privacy are positively associated with customer experience (T-S-P → CX) | [3,16,89,150] |
H5: Fulfilment and service quality are positively associated with customer experience (F-SQ → CX) | [5,18,51,107] |
H6: Interactivity and technological functionalities are positively associated with the customer experience (I-T → CX) | [5,119,123] |
H7: Customer experience is positively associated with customer satisfaction (CX → CS) | [3,4,135] |
H8: Customer experience is positively associated with customer loyalty (CX → CL) | [3,10,17] |
H9: Customer experience is positively associated with electronic word of mouth (CX → eWOM) | [31,141,143,151] |
H10: Customer satisfaction is positively associated with customer loyalty (CS → CL) | [3,10,17] |
H11: Customer satisfaction is positively associated with eWOM (CS → eWOM) | [3,135,141] |
Construct (Type) | Items | Adapted from [Authors] |
---|---|---|
Usability and Website Design (U-WD) (Formative) |
| [3,31,33] |
Omnichannel Integration and Consistency (OI) (Reflective) |
| [21,52,53,54] |
Personalisation and Customisation (P-C) (Formative) |
| [21,55,77] |
Trust, Security and Privacy (T-S-P) (Formative) |
| [3,16,89,150] |
Fulfilment and Service Quality (F-SQ) (Formative) |
| [5,18,51,107] |
Interactivity and Technologies (I-T) (Formative) |
| [5,119,123] |
Customer Experience (CX) (Reflective) |
| [3,4,135] |
Customer Satisfaction (CS) (Reflective) |
| [3,4,135] |
Customer Loyalty (CL) (Reflective) |
| [3,10,17] |
eWOM (Reflective) |
| [31,141,143,151] |
Construct (Result) | Direction of Causality | Interchangeability | Covariance | Nomological Net |
---|---|---|---|---|
U-WB (Formative) | Indicators define what “good usability” means. | Not interchangeable. “Ease of navigation” is distinct from “clear layout”. | Not required. A site can be beautiful but hard to navigate. | Antecedents/consequences for each dimension can differ. |
P-C (Formative) | Indicators (recommendations, adaptation, feeling) form the overall perception of a tailored experience. | Not interchangeable. “Receiving recommendations” is different from “feeling personalised”. | Not required. A user may receive recommendations without feeling the experience is for them. | Drivers of good algorithms are different from drivers of a personal feel. |
T-S-P (Formative) | The dimensions of trust, security, and privacy combine to form the overall belief in the retailer’s integrity. | Not interchangeable. “Trust in policies” is conceptually distinct from “feeling safe to transact”. | Not required. A user might trust a brand but doubt its payment security. | Antecedents differ (e.g., reputation builds trust, encryption signals security). |
F-SQ (Formative) | Indicators (on-time, as-described, service works) are the definition of good fulfilment. | Not interchangeable. “Timely delivery” does not imply “efficient returns service”. | Not required. A product can arrive on time but be wrong, or vice versa. | Causes of delivery delays are different from causes of poor customer support. |
I-T (Formative) | The features create the perception of an interactive and technological experience. | Not interchangeable. “Useful features” is a different concept from “pleasant navigation”. | Not required. A site can have great tools but be clunky and unpleasant to use. | The decision to implement a feature is separate from designing a fluid interface. |
OI (Reflective) | The latent trait of “seamless integration” causes the perception of consistency across channels. | Interchangeable. Both items reflect the same core idea of cross-channel harmony. | Required. Perceived consistency and seamless experience should highly correlate. | Both items should share the same antecedents and consequences. |
Variables | Categories | Frequency | Percentage |
---|---|---|---|
Gender | Male | Female | Prefer not to answer | 151 | 207 | 2 | 41.9% | 57.5% | 0.6% |
Age | 18–24 | 25–34 | 35–44 | 45–54 | 55+ | 179 | 89 | 30 | 32 | 30 | 49.7% | 24.7% | 8.3% | 8.9% | 8.3% |
Education | Primary | Secondary | Bachelor’s | Master’s or PhD | 4 | 114 | 158 | 84 | 1.1% | 31.7% | 43.9% | 23.3% |
Constructs | Indicators | Outer Loadings | Cronbach’s Alpha | rho_A | Composite Reliability | AVE |
---|---|---|---|---|---|---|
Omnichannel Integration | 1 | 0.89 | 0.812 | 0.867 | 0.912 | 0.839 |
2 | 0.942 | |||||
Customer Experience | 1 | 0.953 | 0.938 | 0.939 | 0.96 | 0.89 |
2 | 0.947 | |||||
3 | 0.93 | |||||
Customer Satisfaction | 1 | 0.947 | 0.944 | 0.944 | 0.964 | 0.899 |
2 | 0.944 | |||||
3 | 0.953 | |||||
Customer Loyalty | 1 | 0.932 | 0.894 | 0.911 | 0.934 | 0.826 |
2 | 0.948 | |||||
3 | 0.843 | |||||
WOM | 1 | 0.917 | 0.761 | 0.779 | 0.892 | 0.806 |
3 | 0.877 |
CL | CS | CX | OI | eWOM | |
---|---|---|---|---|---|
CL | 0.909 | ||||
CS | 0.813 | 0.948 | |||
CX | 0.722 | 0.837 | 0.943 | ||
OI | 0.408 | 0.455 | 0.472 | 0.916 | |
eWOM | 0.091 | 0.049 | 0.084 | 0.072 | 0.898 |
Highest Correlation | Correlation | Evaluation | Comment |
---|---|---|---|
CS–CX | 0.837 | 0.837 < 0.948 (CS) and 0.943 (CX) | Acceptable but high; flag for HTMT check |
CS–CL | 0.813 | 0.813 < 0.948 (CS) and 0.909 (CL) | Acceptable |
CX–CL | 0.722 | 0.722 < 0.943 and 0.909 | Acceptable |
Other correlations | ≤0.625 | All < relevant √AVE | Acceptable |
CL | CS | CX | OI | eWOM | |
---|---|---|---|---|---|
CL | |||||
CS | 0.88 | ||||
CX | 0.782 | 0.89 | |||
OI | 0.473 | 0.51 | 0.529 | ||
eWOM | 0.153 | 0.062 | 0.101 | 0.088 |
Item | U-WD | P-C | T-S-P | F-SQ | I-T |
---|---|---|---|---|---|
1 | 2.656 | 2.526 | 2.586 | 1.886 | 1.599 |
2 | 3.393 | 2.722 | 3.131 | 1.837 | 1.599 |
3 | 3.025 | 2.517 | 3.855 | 1.431 |
Formative Construct | Significant Indicators (p < 0.05) | Non-Significant Indicators (p ≥ 0.05) | Outer Loadings * | Comment Retain/Drop? | |
---|---|---|---|---|---|
Lowest | Highest | ||||
Trust–Security–Privacy (T-S-P) | 1 (β = 0.509, t = 3.73) 2 (β = 0.501, t = 3.83) | 3 (β = 0.076, t = 0.47) | 0.878 | 0.924 | Even 3 (weight not significant earlier) loads very strongly, so retain. |
Fulfilment and Service Quality (F-SQ) | 1–3 all significant (t ≥ 3.16) | — | 0.786 | 0.879 | Retain all. |
Interactivity and Technology (I-T) | 1 (β = 0.200, t = 2.68) 2 (β = 0.865, t = 15.32) | — | 0.730 | 0.987 | Retain all. |
Personalisation and Customisation (P-C) | 2 (β = 0.872, t = 4.48) | 1 (β = 0.091, t = 0.40) 3 (β = 0.077, t = 0.35) | 0.783 | 0.996 | 1 and 3 load strongly, justifying their inclusion despite non-significant weights. Retain all |
Usability and Web Design (U-WD) | 1 (β = 0.632, t = 7.04) 3 (β = 0.359, t = 2.65) | 2 (β = 0.087, t = 0.63) | 0.855 | 0.960 | All three items are robust. Retain all. |
CL | CS | CX | F-SQ | I-T | OI | P-C | T-S-P | U-WD | eWOM | |
---|---|---|---|---|---|---|---|---|---|---|
CL | ||||||||||
CS | 3.348 | 3.348 | ||||||||
CX | 3.348 | 1 | 3.348 | |||||||
F-SQ | 1.821 | |||||||||
I-T | 1.954 | |||||||||
OI | 1.566 | |||||||||
P-C | 1.241 | |||||||||
T-S-P | 1.645 | |||||||||
U-WD | 1.877 | |||||||||
eWOM |
Constructs | Original Sample | Sample Mean | Standard Deviation | T Statistics (|O/STDEV|) | p Values | Comment |
---|---|---|---|---|---|---|
CS → CL | 0.7 | 0.702 | 0.091 | 7.724 | 0 | Supported |
CS → eWOM | −0.07 | −0.067 | 0.147 | 0.475 | 0.635 | Not supported |
CX → CL | 0.135 | 0.133 | 0.091 | 1.481 | 0.139 | Not supported |
CX → CS | 0.837 | 0.836 | 0.032 | 26.489 | 0 | Supported |
CX → eWOM | 0.143 | 0.142 | 0.132 | 1.082 | 0.279 | Not supported |
F-SQ → CX | 0.218 | 0.219 | 0.057 | 3.854 | 0 | Supported |
I-T → CX | 0.28 | 0.274 | 0.055 | 5.077 | 0 | Supported |
OI → CX | 0.01 | 0.008 | 0.04 | 0.238 | 0.812 | Not supported |
P-C → CX | 0.092 | 0.095 | 0.033 | 2.804 | 0.005 | Supported |
T-S-P → CX | 0.223 | 0.225 | 0.053 | 4.229 | 0 | Supported |
U-WD → CX | 0.215 | 0.218 | 0.058 | 3.719 | 0 | Supported |
Constructs | Original Sample | Sample Mean | Standard Deviation | T Statistics (|O/STDEV|) | p Values | Comment |
---|---|---|---|---|---|---|
U-WD → CX → eWOM | 0.031 | 0.031 | 0.031 | 0.977 | 0.329 | Supported |
U-WD → CX → CS → eWOM | −0.013 | −0.012 | 0.029 | 0.44 | 0.66 | Not supported |
U-WD → CX → CS → CL | 0.126 | 0.128 | 0.04 | 3.171 | 0.002 | Supported |
U-WD → CX → CS | 0.18 | 0.182 | 0.049 | 3.638 | 0 | Supported |
U-WD → CX → CL | 0.029 | 0.029 | 0.022 | 1.332 | 0.183 | Supported |
T-S-P → CX → eWOM | 0.032 | 0.032 | 0.031 | 1.015 | 0.31 | Supported |
T-S-P → CX → CS → eWOM | −0.013 | −0.013 | 0.029 | 0.448 | 0.654 | Not supported |
T-S-P → CX → CS → CL | 0.131 | 0.132 | 0.037 | 3.529 | 0 | Supported |
T-S-P → CX → CS | 0.187 | 0.188 | 0.045 | 4.118 | 0 | Supported |
T-S-P → CX → CL | 0.03 | 0.03 | 0.022 | 1.355 | 0.176 | Supported |
P-C → CX → eWOM | 0.013 | 0.014 | 0.014 | 0.938 | 0.348 | Supported |
P-C → CX → CS → eWOM | −0.005 | −0.005 | 0.013 | 0.433 | 0.665 | Not supported |
P-C → CX → CS → CL | 0.054 | 0.055 | 0.02 | 2.704 | 0.007 | Supported |
P-C → CX → CS | 0.077 | 0.079 | 0.027 | 2.831 | 0.005 | Supported |
P-C → CX → CL | 0.012 | 0.013 | 0.011 | 1.175 | 0.24 | Supported |
OI → CX → eWOM | 0.001 | 0.001 | 0.008 | 0.171 | 0.864 | Not supported |
OI → CX → CS → eWOM | −0.001 | 0 | 0.006 | 0.097 | 0.923 | Not supported |
OI → CX → CS → CL | 0.006 | 0.006 | 0.024 | 0.235 | 0.814 | Not supported |
OI → CX → CS | 0.008 | 0.007 | 0.034 | 0.238 | 0.812 | Not supported |
OI → CX → CL | 0.001 | 0 | 0.006 | 0.2 | 0.842 | Not supported |
I-T → CX → eWOM | 0.04 | 0.039 | 0.037 | 1.075 | 0.282 | Supported |
I-T → CX → CS → eWOM | −0.016 | −0.015 | 0.034 | 0.478 | 0.632 | Not supported |
I-T → CX → CS → CL | 0.164 | 0.162 | 0.041 | 3.955 | 0 | Supported |
I-T → CX → CS | 0.234 | 0.229 | 0.046 | 5.104 | 0 | Supported |
I-T → CX → CL | 0.038 | 0.035 | 0.025 | 1.522 | 0.128 | Supported |
F-SQ → CX → eWOM | 0.031 | 0.031 | 0.031 | 1.003 | 0.316 | Supported |
F-SQ → CX → CS → eWOM | −0.013 | −0.012 | 0.028 | 0.453 | 0.651 | Not supported |
F-SQ → CX → CS → CL | 0.128 | 0.129 | 0.038 | 3.349 | 0.001 | Supported |
F-SQ → CX → CS | 0.183 | 0.184 | 0.049 | 3.752 | 0 | Supported |
F-SQ → CX → CL | 0.029 | 0.029 | 0.022 | 1.315 | 0.189 | Supported |
CX → CS → eWOM | −0.059 | −0.056 | 0.124 | 0.471 | 0.637 | Not supported |
CX → CS → CL | 0.586 | 0.587 | 0.083 | 7.076 | 0 | Supported |
Constructs | Original Sample | Sample Mean | Standard Deviation | T Statistics (|O/STDEV|) | p Values | Comment |
---|---|---|---|---|---|---|
U-WD → eWOM | 0.018 | 0.019 | 0.014 | 1.289 | 0.197 | Supported |
U-WD → CX | 0.215 | 0.218 | 0.058 | 3.719 | 0 | Supported |
U-WD → CS | 0.18 | 0.182 | 0.049 | 3.638 | 0 | Supported |
U-WD → CL | 0.155 | 0.157 | 0.044 | 3.552 | 0 | Supported |
T-S-P → eWOM | 0.019 | 0.019 | 0.014 | 1.355 | 0.176 | Supported |
T-S-P → CX | 0.223 | 0.225 | 0.053 | 4.229 | 0 | Supported |
T-S-P → CS | 0.187 | 0.188 | 0.045 | 4.118 | 0 | Supported |
T-S-P → CL | 0.161 | 0.162 | 0.04 | 3.993 | 0 | Supported |
P-C → eWOM | 0.008 | 0.008 | 0.007 | 1.19 | 0.234 | Supported |
P-C → CX | 0.092 | 0.095 | 0.033 | 2.804 | 0.005 | Supported |
P-C → CS | 0.077 | 0.079 | 0.027 | 2.831 | 0.005 | Supported |
P-C → CL | 0.067 | 0.068 | 0.024 | 2.764 | 0.006 | Supported |
OI → eWOM | 0.001 | 0.001 | 0.004 | 0.194 | 0.846 | Not Supported |
OI → CX | 0.01 | 0.008 | 0.04 | 0.238 | 0.812 | Not Supported |
OI → CS | 0.008 | 0.007 | 0.034 | 0.238 | 0.812 | Not Supported |
OI → CL | 0.007 | 0.006 | 0.029 | 0.239 | 0.811 | Not Supported |
I-T → eWOM | 0.023 | 0.024 | 0.017 | 1.384 | 0.166 | Supported |
I-T → CX | 0.28 | 0.274 | 0.055 | 5.077 | 0 | Supported |
I-T → CS | 0.234 | 0.229 | 0.046 | 5.104 | 0 | Supported |
I-T → CL | 0.202 | 0.197 | 0.038 | 5.33 | 0 | Supported |
F-SQ → eWOM | 0.018 | 0.019 | 0.015 | 1.262 | 0.207 | Supported |
F-SQ → CX | 0.218 | 0.219 | 0.057 | 3.854 | 0 | Supported |
F-SQ → CS | 0.183 | 0.184 | 0.049 | 3.752 | 0 | Supported |
F-SQ → CL | 0.157 | 0.158 | 0.042 | 3.706 | 0 | Supported |
CX → eWOM | 0.084 | 0.087 | 0.058 | 1.446 | 0.148 | Supported |
CX → CS | 0.837 | 0.836 | 0.032 | 26.489 | 0 | Supported |
CX → CL | 0.722 | 0.72 | 0.04 | 18.265 | 0 | Supported |
CS → eWOM | −0.07 | −0.067 | 0.147 | 0.475 | 0.635 | Not Supported |
CS → CL | 0.7 | 0.702 | 0.091 | 7.724 | 0 | Supported |
Explanatory Power | Metrics | CL | CS | CX | eWOM |
---|---|---|---|---|---|
R Square | Original Sample (O) | 0.667 | 0.701 | 0.626 | 0.009 |
Sample Mean (M) | 0.669 | 0.7 | 0.638 | 0.019 | |
p Values | 0 | 0 | 0 | 0.421 | |
R Square Adjusted | Original Sample (O) | 0.665 | 0.7 | 0.62 | 0.003 |
Sample Mean (M) | 0.667 | 0.699 | 0.631 | 0.013 | |
p Values | 0 | 0 | 0 | 0.78 |
Original Sample | Sample Mean | Standard Deviation | T Statistics | p Values | Comment | |
---|---|---|---|---|---|---|
CS → CL | 0.440 | 0.463 | 0.157 | 2.810 | 0.005 | Large |
CS → eWOM | 0.001 | 0.008 | 0.009 | 0.163 | 0.87 | - |
CX → CL | 0.016 | 0.023 | 0.026 | 0.622 | 0.534 | - |
CX → CS | 2.348 | 2.438 | 0.619 | 3.793 | 0 | Large |
CX → eWOM | 0.006 | 0.011 | 0.010 | 0.625 | 0.532 | - |
F-SQ → CX | 0.070 | 0.078 | 0.041 | 1.709 | 0.087 | Small |
I-T → CX | 0.107 | 0.110 | 0.047 | 2.267 | 0.023 | Small |
OI → CX | 0.000 | 0.003 | 0.004 | 0.037 | 0.97 | - |
P-C → CX | 0.018 | 0.022 | 0.015 | 1.267 | 0.205 | - |
T-S-P → CX | 0.081 | 0.089 | 0.041 | 1.990 | 0.047 | Small |
U-WD → CX | 0.066 | 0.073 | 0.037 | 1.792 | 0.073 | Small |
PLS | LM | |||
---|---|---|---|---|
Construct | RMSE | Q2_Predict | RMSE | Q2_Predict |
CL 1 | 0.57 | 0.393 | 0.557 | 0.42 |
CL 2 | 0.579 | 0.423 | 0.584 | 0.413 |
CL 3 | 0.86 | 0.3 | 0.872 | 0.28 |
CS 1 | 0.495 | 0.509 | 0.494 | 0.511 |
CS 2 | 0.516 | 0.501 | 0.52 | 0.494 |
CS 3 | 0.454 | 0.518 | 0.454 | 0.519 |
CX1 | 0.477 | 0.536 | 0.485 | 0.52 |
CX2 | 0.485 | 0.535 | 0.488 | 0.527 |
CX3 | 0.52 | 0.522 | 0.528 | 0.507 |
eWOM3 | 1.397 | 0.008 | 1.364 | 0.055 |
eWOM1 | 1.291 | 0.002 | 1.244 | 0.073 |
Saturated Model | Estimated Model | |
---|---|---|
SRMR | 0.042 | 0.064 |
d_ULS | 0.653 | 1.559 |
d_G | 0.429 | 0.489 |
Chi-Square | 931.238 | 1029.472 |
NFI | 0.886 | 0.874 |
rms Theta | 0.179 |
H | Constructs | Original Sample (B) | Sample Mean (B) | Standard Deviation | T Statistics | p Values | Results |
---|---|---|---|---|---|---|---|
H1 | U-WD → CX | 0.215 | 0.218 | 0.057 | 3.742 | 0 | Supported |
H2 | OI → CX | 0.010 | 0.008 | 0.04 | 0.239 | 0.812 | Not supported |
H3 | P-C → CX | 0.092 | 0.095 | 0.033 | 2.791 | 0.005 | Supported |
H4 | T-S-P → CX | 0.223 | 0.225 | 0.053 | 4.215 | 0 | Supported |
H5 | F-SQ → CX | 0.218 | 0.218 | 0.057 | 3.803 | 0 | Supported |
H6 | I-T → CX | 0.280 | 0.274 | 0.055 | 5.116 | 0 | Supported |
H7 | CX → CS | 0.837 | 0.836 | 0.031 | 27.122 | 0 | Supported |
H8 | CX → CL | 0.135 | 0.134 | 0.09 | 1.493 | 0.139 | Not supported |
H9 | CX → eWOM | 0.143 | 0.142 | 0.131 | 1.085 | 0.279 | Not supported |
H10 | CS → CL | 0.700 | 0.701 | 0.09 | 7.789 | 0 | Supported |
H11 | CS → eWOM | −0.070 | −0.067 | 0.146 | 0.478 | 0.635 | Not supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, P.B.; Perestrelo, B.M.; Santos, J.D. Unpacking Customer Experience in Online Shopping: Effects on Satisfaction and Loyalty. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 245. https://doi.org/10.3390/jtaer20030245
Pires PB, Perestrelo BM, Santos JD. Unpacking Customer Experience in Online Shopping: Effects on Satisfaction and Loyalty. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(3):245. https://doi.org/10.3390/jtaer20030245
Chicago/Turabian StylePires, Paulo Botelho, Beatriz Martins Perestrelo, and José Duarte Santos. 2025. "Unpacking Customer Experience in Online Shopping: Effects on Satisfaction and Loyalty" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 3: 245. https://doi.org/10.3390/jtaer20030245
APA StylePires, P. B., Perestrelo, B. M., & Santos, J. D. (2025). Unpacking Customer Experience in Online Shopping: Effects on Satisfaction and Loyalty. Journal of Theoretical and Applied Electronic Commerce Research, 20(3), 245. https://doi.org/10.3390/jtaer20030245