Understanding the Impact of Inconsistency on the Helpfulness of Online Reviews
Abstract
:1. Introduction
- (1)
- How does rating inconsistency affect review helpfulness?
- (2)
- How does aspect-based sentiment inconsistency influence review helpfulness?
- (3)
- Is the relationship between inconsistency and review helpfulness moderated by reviewer expertise?
2. Literature Review
2.1. Signaling Theory
2.2. Online Customer Review Helpfulness
2.3. Review Inconsistency
2.4. Reviewer Expertise as a Moderator Variable
3. Research Methodology
3.1. Data Description
3.2. Measurements
3.3. Model
4. Results
5. Discussion
6. Conclusions
6.1. Theoretical Implications
6.2. Practical Implications
7. Limitation and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaemingk, D. Online Customer Review Statistics You Should Know. Available online: https://www.qualtrics.com/blog/online-review-stats/ (accessed on 1 January 2025).
- Ismagilova, E.; Slade, E.; Rana, N.P.; Dwivedi, Y.K. The effect of characteristics of source credibility on consumer behaviour: A meta-analysis. J. Retail. Consum. Serv. 2020, 53, 101736. [Google Scholar] [CrossRef]
- Huang, A.H.; Chen, K.; Yen, D.C.; Tran, T.P. A study of factors that contribute to online review helpfulness. Comput. Hum. Behav. 2015, 48, 17–27. [Google Scholar] [CrossRef]
- Li, K.; Chen, Y.; Zhang, L. Exploring the influence of online reviews and motivating factors on sales: A meta-analytic study and the moderating role of product category. J. Retail. Consum. Serv. 2020, 55, 102107. [Google Scholar] [CrossRef]
- Choi, H.S.; Leon, S. An empirical investigation of online review helpfulness: A big data perspective. Decis. Support Syst. 2020, 139, 113403. [Google Scholar] [CrossRef]
- Karimi, S.; Wang, F. Online review helpfulness: Impact of reviewer profile image. Decis. Support Syst. 2017, 96, 39–48. [Google Scholar] [CrossRef]
- Yin, D.; de Vreede, T.; Steele, L.M.; de Vreede, G.-J. Decide Now or Later: Making Sense of Incoherence Across Online Reviews. Inf. Syst. Res. 2022, 34, 1211–1227. [Google Scholar] [CrossRef]
- Connelly, B.L.; Certo, S.T.; Ireland, R.D.; Reutzel, C.R. Signaling Theory: A Review and Assessment. J. Manag. 2010, 37, 39–67. [Google Scholar] [CrossRef]
- Spence, M. Job Market Signaling. Q. J. Econ. 1973, 87, 355–374. [Google Scholar] [CrossRef]
- Boateng, S.L. Online relationship marketing and customer loyalty: A signaling theory perspective. Int. J. Bank Mark. 2019, 37, 226–240. [Google Scholar] [CrossRef]
- Upadhyay, Y.; Tripathi, A. Brand wagon effect: How brand equity eclipses the effect of eWoM on purchase intentions—Mediating role of review helpfulness. J. Bus. Res. 2023, 168, 114239. [Google Scholar] [CrossRef]
- Wang, X.; Guo, J.; Wu, Y.; Liu, N. Emotion as signal of product quality. Internet Res. 2020, 30, 463–485. [Google Scholar] [CrossRef]
- Reimer, T.; Benkenstein, M. Altruistic eWOM marketing: More than an alternative to monetary incentives. J. Retail. Consum. Serv. 2016, 31, 323–333. [Google Scholar] [CrossRef]
- Ayeh, J.K. Travellers’ acceptance of consumer-generated media: An integrated model of technology acceptance and source credibility theories. Comput. Hum. Behav. 2015, 48, 173–180. [Google Scholar] [CrossRef]
- Huang, H.; Liu, S.Q.; Lu, Z. When and why Language Assertiveness Affects Online Review Persuasion. J. Hosp. Tour. Res. 2022, 47, 988–1016. [Google Scholar] [CrossRef]
- Kong, J.; Lou, C. Do cultural orientations moderate the effect of online review features on review helpfulness? A case study of online movie reviews. J. Retail. Consum. Serv. 2023, 73, 103374. [Google Scholar] [CrossRef]
- Eslami, S.P.; Ghasemaghaei, M.; Hassanein, K. Which online reviews do consumers find most helpful? A multi-method investigation. Decis. Support Syst. 2018, 113, 32–42. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, S.; Li, Y.; Chen, Y.; Yao, J.; Qazi, A. Does the review deserve more helpfulness when its title resembles the content? Locating helpful reviews by text mining. Inf. Process. Manag. 2020, 57, 102179. [Google Scholar] [CrossRef]
- Hong, H.; Xu, D.; Wang, G.A.; Fan, W. Understanding the determinants of online review helpfulness: A meta-analytic investigation. Decis. Support Syst. 2017, 102, 1–11. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, J.Q. Born Unequal: A Study of the Helpfulness of User-Generated Product Reviews. J. Retail. 2011, 87, 598–612. [Google Scholar] [CrossRef]
- Lim, Y.-S.; Van Der Heide, B. Evaluating the Wisdom of Strangers: The Perceived Credibility of Online Consumer Reviews on Yelp. J. Comput. Mediat. Commun. 2015, 20, 67–82. [Google Scholar] [CrossRef]
- Festinger, L.; Carlsmith, J.M. Cognitive consequences of forced compliance. J. Abnorm. Soc. Psychol. 1959, 58, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Harmon-Jones, E.; Mills, J. An Introduction to Cognitive Dissonance Theory and An Overview of Current Perspectives on the Theory. In Cognitive Dissonance: Reexamining a Pivotal Theory in Psychology; American Psychological Association: Washington, DC, USA, 2019; pp. 3–24. [Google Scholar]
- Shan, G.; Zhou, L.; Zhang, D. From conflicts and confusion to doubts: Examining review inconsistency for fake review detection. Decis. Support Syst. 2021, 144, 113513. [Google Scholar] [CrossRef]
- Sugathan, P.; Sudhir, S.; Ramachandran, R. Exploring an incongruence frame for online reviews. J. Consum. Behav. 2024, 23, 2913–2932. [Google Scholar] [CrossRef]
- Wang, Y.; Ngai, E.W.; Li, K. The effect of review content richness on product review helpfulness: The moderating role of rating inconsistency. Electron. Commer. Res. Appl. 2023, 61, 101290. [Google Scholar] [CrossRef]
- Kwok, L.; Xie, K.L. Factors contributing to the helpfulness of online hotel reviews. Int. J. Contemp. Hosp. Manag. 2016, 28, 2156–2177. [Google Scholar] [CrossRef]
- Baek, H.; Ahn, J.; Choi, Y. Helpfulness of Online Consumer Reviews: Readers’ Objectives and Review Cues. Int. J. Electron. Commer. 2012, 17, 99–126. [Google Scholar] [CrossRef]
- Purnawirawan, N.; De Pelsmacker, P.; Dens, N. Balance and Sequence in Online Reviews: How Perceived Usefulness Affects Attitudes and Intentions. J. Interact. Mark. 2012, 26, 244–255. [Google Scholar] [CrossRef]
- Agrawal, S.R.; Mittal, D. Optimizing customer engagement content strategy in retail and E-tail: Available on online product review videos. J. Retail. Consum. Serv. 2022, 67, 102966. [Google Scholar] [CrossRef]
- Sen, S.; Lerman, D. Why are you telling me this? An examination into negative consumer reviews on the Web. J. Interact. Mark. 2007, 21, 76–94. [Google Scholar] [CrossRef]
- Yin, D.; Bond, S.D.; Zhang, H. Anxious or Angry? Effects of Discrete Emotions on the Perceived Helpfulness of Online Reviews. MIS Q. 2014, 38, 539–560. Available online: https://www.jstor.org/stable/26634939 (accessed on 17 December 2024). [CrossRef]
- Pentina, I.; Bailey, A.A.; Zhang, L. Exploring effects of source similarity, message valence, and receiver regulatory focus on yelp review persuasiveness and purchase intentions. J. Mark. Commun. 2018, 24, 125–145. [Google Scholar] [CrossRef]
- Li, H.; Yu, B.X.B.; Li, G.; Gao, H. Restaurant survival prediction using customer-generated content: An aspect-based sentiment analysis of online reviews. Tour. Manag. 2023, 96, 104707. [Google Scholar] [CrossRef]
- Sann, R.; Lai, P.-C. Understanding homophily of service failure within the hotel guest cycle: Applying NLP-aspect-based sentiment analysis to the hospitality industry. Int. J. Hosp. Manag. 2020, 91, 102678. [Google Scholar] [CrossRef]
- Do, H.H.; Prasad, P.W.C.; Maag, A.; Alsadoon, A. Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review. Expert Syst. Appl. 2019, 118, 272–299. [Google Scholar] [CrossRef]
- Ryu, K.; Lee, H.R.; Gon Kim, W. The influence of the quality of the physical environment, food, and service on restaurant image, customer perceived value, customer satisfaction, and behavioral intentions. Int. J. Contemp. Hosp. Manag. 2012, 24, 200–223. [Google Scholar] [CrossRef]
- Alamoudi, E.S.; Alghamdi, N.S. Sentiment classification and aspect-based sentiment analysis on yelp reviews using deep learning and word embeddings. J. Decis. Syst. 2021, 30, 259–281. [Google Scholar] [CrossRef]
- Bae, S.; Slevitch, L.; Tomas, S. The effects of restaurant attributes on satisfaction and return patronage intentions: Evidence from solo diners’ experiences in the United States. Cogent Bus. Manag. 2018, 5, 1493903. [Google Scholar] [CrossRef]
- Zhong, Y.; Moon, H.C. What Drives Customer Satisfaction, Loyalty, and Happiness in Fast-Food Restaurants in China? Perceived Price, Service Quality, Food Quality, Physical Environment Quality, and the Moderating Role of Gender. Foods 2020, 9, 460. [Google Scholar] [CrossRef]
- Ha, J.; Jang, S. Effects of service quality and food quality: The moderating role of atmospherics in an ethnic restaurant segment. Int. J. Hosp. Manag. 2010, 29, 520–529. [Google Scholar] [CrossRef]
- Han, H.; Hyun, S.S. Impact of hotel-restaurant image and quality of physical-environment, service, and food on satisfaction and intention. Int. J. Hosp. Manag. 2017, 63, 82–92. [Google Scholar] [CrossRef]
- Namin, A. Revisiting customers’ perception of service quality in fast food restaurants. J. Retail. Consum. Serv. 2017, 34, 70–81. [Google Scholar] [CrossRef]
- Yi, S.; Jinlin, Z.; Joung, H.-W. Influence of price and brand image on restaurant customers’ restaurant selection attribute. J. Foodserv. Bus. Res. 2018, 21, 200–217. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, Z.; Yao, W. Navigating the complexities of online opinion formation: An insight into consumer cognitive heuristics. J. Retail. Consum. Serv. 2024, 81, 103966. [Google Scholar] [CrossRef]
- Ruiz-Mafe, C.; Chatzipanagiotou, K.; Curras-Perez, R. The role of emotions and conflicting online reviews on consumers’ purchase intentions. J. Bus. Res. 2018, 89, 336–344. [Google Scholar] [CrossRef]
- Thomas, J.B.; McDaniel, R.R. Interpreting Strategic Issues: Effects of Strategy and the Information-Processing Structure of Top Management Teams. Acad. Manag. J. 1990, 33, 286–306. [Google Scholar] [CrossRef]
- Zhu, L.; Li, H.; He, W.; Hong, C. What influences online reviews’ perceived information quality? Perspectives on information richness, emotional polarity and product type. Electron. Libr. 2020, 38, 273–296. [Google Scholar] [CrossRef]
- Jin, W.; Chen, Y.; Yang, S.; Zhou, S.; Jiang, H.; Wei, J. Personalized managerial response and negative inconsistent review helpfulness: The mediating effect of perceived response helpfulness. J. Retail. Consum. Serv. 2023, 74, 103398. [Google Scholar] [CrossRef]
- Xian, C.; Vali, H.; Tian, R.; Xu, J.D.; Yildirim, M.B. The differential effect of three types of conflicting online reviews on perceived informativeness. J. Electron. Bus. Digit. Econ. 2024, 3, 20–35. [Google Scholar] [CrossRef]
- Walther, J.B. Interpersonal Effects in Computer-Mediated Interaction: A Relational Perspective. Commun. Res. 1992, 19, 52–90. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Ngai, E.W.T. Does certainty tone matter? Effects of review certainty, reviewer characteristics, and organizational niche width on review usefulness. Inf. Manag. 2021, 58, 103549. [Google Scholar] [CrossRef]
- Cheung, C.M.-Y.; Sia, C.-L.; Kuan, K.K.Y. Is This Review Believable? A Study of Factors Affecting the Credibility of Online Consumer Reviews from an ELM Perspective. J. Assoc. Inf. Syst. 2012, 13, 2. [Google Scholar] [CrossRef]
- Gregoriades, A.; Pampaka, M.; Herodotou, H.; Christodoulou, E. Explaining tourist revisit intention using natural language processing and classification techniques. J. Big Data 2023, 10, 60. [Google Scholar] [CrossRef]
- Xian, Y.; Lampert, C.H.; Schiele, B.; Akata, Z. Zero-Shot Learning—A Comprehensive Evaluation of the Good, the Bad and the Ugly. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 2251–2265. [Google Scholar] [CrossRef] [PubMed]
- Aljedaani, W.; Rustam, F.; Mkaouer, M.W.; Ghallab, A.; Rupapara, V.; Washington, P.B.; Lee, E.; Ashraf, I. Sentiment analysis on Twitter data integrating TextBlob and deep learning models: The case of US airline industry. Knowl. Based Syst. 2022, 255, 109780. [Google Scholar] [CrossRef]
- Baccianella, S.; Esuli, A.; Sebastiani, F. SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. Int. Conf. Lang. Resour. Eval. 2010, 10, 2200–2204. [Google Scholar]
- Mudambi, S.M.; Schuff, D. Research Note: What Makes a Helpful Online Review? A Study of Customer Reviews on Amazon.com. MIS Q. 2010, 34, 185–200. [Google Scholar] [CrossRef]
- Kennedy, P. A Guide to Econometrics; Blackwell: Malden, MA, USA, 2008. [Google Scholar]
- Daoud, J.I. Multicollinearity and Regression Analysis. J. Phys. Conf. Ser. 2017, 949, 012009. [Google Scholar] [CrossRef]
- Park, J.; Yoo, J.W.; Cho, Y.; Park, H. Examining the impact of service robot communication styles on customer intimacy following service failure. J. Retail. Consum. Serv. 2023, 75, 103511. [Google Scholar] [CrossRef]
- Jackson, T.W.; Farzaneh, P. Theory-based model of factors affecting information overload. Int. J. Inf. Manag. 2012, 32, 523–532. [Google Scholar] [CrossRef]
Variables | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
Dependent Variable | ||||
Review Helpfulness | 0 | 462 | 2.033 | 6.374 |
Independent Variable | ||||
Rating Inconsistency | 0 | 3.915 | 0.946 | 0.734 |
Décor Inconsistency (DI) | −17.1 | 34.717 | 0.286 | 1.751 |
Taste Inconsistency (TI) | −19.450 | 38.304 | 0.564 | 2.277 |
Price Inconsistency (PI) | −11.597 | 17.967 | 0.085 | 0.986 |
Service Inconsistency (SI) | −24.533 | 37.725 | 0.379 | 2.250 |
Reviewer Expertise | 0 | 587,933 | 833.731 | 8179.763 |
Control Variable | ||||
Review Subjectivity | 0 | 1 | 0.574 | 0.127 |
Text Length | 6 | 5000 | 578.084 | 506.673 |
Business Popularity | 100 | 1321 | 392.176 | 222.270 |
Variables | VIF |
---|---|
Independent Variable | |
Rating Inconsistency | 1.043 |
Price Inconsistency (PI) | 1.020 |
Service Inconsistency (SI) | 1.030 |
Décor Inconsistency (DI) | 1.034 |
Taste Inconsistency (TI) | 1.021 |
Reviewer Expertise | 1.016 |
Control Variable | |
Review Subjectivity | 1.065 |
Text Length | 1.111 |
Business Popularity | 1.002 |
Coefficient | Std.Err | Z-Value | p-Value | |
---|---|---|---|---|
First order effects | ||||
Rating Inconsistency (RI) | −0.461 | 0.038 | −12.185 | *** |
Price Inconsistency (PI) | 0.535 | 0.576 | 0.928 | |
Service Inconsistency (SI) | −1.723 | 0.549 | −3.138 | ** |
Décor Inconsistency (DI) | 1.778 | 0.602 | 2.956 | ** |
Taste Inconsistency (TI) | 1.103 | 0.517 | 2.133 | * |
Reviewer Expertise (RE) | 4.803 | 0.049 | 98.458 | *** |
Second order effects | ||||
RI × RE | −0.621 | 0.050 | −12.529 | *** |
PI × RE | 7.352 | 0.610 | 12.051 | *** |
SI × RE | −4.164 | 0.514 | −8.102 | *** |
DI × RE | −0.916 | 0.415 | −2.206 | ** |
TI × RE | −6.456 | 0.186 | −34.625 | *** |
Control variables | ||||
Review Subjectivity | −1.211 | 0.228 | −5.302 | *** |
Text Length | 22.706 | 0.266 | 85.331 | *** |
Business Popularity | −2.882 | 0.153 | −18.812 | *** |
(Intercept):1 | −2.441 | 0.153 | −15.984 | *** |
(Intercept):2 | 2.045 | 0.004 | 543.072 | *** |
Coefficient | Std.Err | Z-Value | M3 | |
---|---|---|---|---|
First order effects | ||||
Rating Inconsistency (RI) | −0.452 | 0.038 | −12.032 | *** |
Price Inconsistency (PI) | 0.045 | 0.573 | 0.078 | |
Service Inconsistency (SI) | −1.560 | 0.545 | −2.864 | ** |
Décor Inconsistency (DI) | 1.935 | 0.596 | 3.246 | ** |
Taste Inconsistency (TI) | 1.140 | 0.512 | 2.225 | * |
Reviewer Expertise (RE) | 5.072 | 0.050 | 101.419 | *** |
Second order effects | ||||
RI × RC | −0.571 | 0.049 | −11.556 | *** |
PI × RC | 12.464 | 0.609 | 20.479 | *** |
SI × RC | −6.012 | 0.324 | −18.529 | *** |
DI × RC | −5.233 | 0.329 | −15.926 | *** |
TI × RC | −8.157 | 0.361 | −22.604 | *** |
Control variables | ||||
Review Subjectivity | −1.157 | 0.227 | −5.104 | *** |
Text Length | 22.503 | 0.264 | 85.174 | *** |
Business Popularity | −2.841 | 0.152 | −18.686 | *** |
(Intercept):1 | −2.427 | 0.152 | −16.003 | *** |
(Intercept):2 | 2.038 | 0.004 | 541.598 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Park, H. Understanding the Impact of Inconsistency on the Helpfulness of Online Reviews. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 80. https://doi.org/10.3390/jtaer20020080
Park J, Park H. Understanding the Impact of Inconsistency on the Helpfulness of Online Reviews. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(2):80. https://doi.org/10.3390/jtaer20020080
Chicago/Turabian StylePark, Junsung, and Heejun Park. 2025. "Understanding the Impact of Inconsistency on the Helpfulness of Online Reviews" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 2: 80. https://doi.org/10.3390/jtaer20020080
APA StylePark, J., & Park, H. (2025). Understanding the Impact of Inconsistency on the Helpfulness of Online Reviews. Journal of Theoretical and Applied Electronic Commerce Research, 20(2), 80. https://doi.org/10.3390/jtaer20020080