Prediction and Optimization for Multi-Product Marketing Resource Allocation in Cross-Border E-Commerce
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Problem Definition
3.2. Data Collection
3.3. Prediction Tasks
3.3.1. Prediction Model Development
3.3.2. Feature Selection and Engineering
3.3.3. Evaluation Metrics
3.4. Promotion Allocation Models and Algorithms
3.4.1. Hot-Selling Strategy
3.4.2. Greedy Rule-Based Algorithm
3.4.3. Integer Programming Model
- Marketing resource limits:
- constraint (7): Total marketing resource limits. A total budget limit is set, ensuring that the total promotion sent to all users does not exceed N.
- User experience:
- 3.
- constraint (9): Single-product promotion. Each promotional message (e.g., the k-th message to user j) contains exactly one product.
- 4.
- constraint (10): Exposure uniqueness. Users receive each product i at most once during the decision period.
- 5.
- constraint (11): Sequential delivery. Promotion in k-th period can be sent to user j only after delivering promotion in -th period. More specifically, the right-hand side equals the number of promotion messages that user j receives before period k; this number must be at least one to allow sending product i to user j in period k.
- Regulatory compliance in logistics:
- 6.
- constraint (12): Certain products may be unavailable in specific regions. For example, in Denmark, some biodegradable plastic products may be prohibited due to environmental regulations.
3.4.4. Equivalent Minimum-Cost Flow Problem
4. Experiments and Results
4.1. Experimental Design
4.2. Experimental Results
4.2.1. Comparison of Predictive Model Performance
4.2.2. Comparison of Optimization Effects on Orders
4.2.3. Comparison of Optimization Effects on Sales Revenue
4.3. Numerical Experiment
5. Discussion
5.1. Key Findings
5.2. Theoretical Implications
5.3. Practical Implications
5.4. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Pseudo-Code of Greedy Rule-Based Algorithm
Algorithm A1: Promotion allocation based on greedy. |
|
Appendix A.2. Sup-Problem Example
Product | Customer Index | ||
---|---|---|---|
1 | 1 | 0.385 | 0.385 × 0.9 |
1 | 5 | 0.375 | 0.375 × 0.9 |
1 | 3 | 0.166 | 0.166 × 0.9 |
1 | 4 | 0.109 | 0.109 × 0.9 |
1 | 2 | 0.237 | 0.237 × 0.9 |
2 | 5 | 0.401 | 0.401 × 0.9 |
2 | 1 | 0.103 | 0.103 × 0.9 |
2 | 4 | 0.206 | 0.206 × 0.9 |
2 | 2 | 0.012 | 0.012 × 0.9 |
2 | 3 | 0.190 | 0.190 × 0.9 |
Product | Customer | ||
---|---|---|---|
1 | 1 | 1 | 0 |
1 | 5 | 0 | 1 |
1 | 3 | 0 | 0 |
1 | 4 | 0 | 0 |
1 | 2 | 0 | 0 |
2 | 5 | 1 | 0 |
2 | 1 | 0 | 0 |
2 | 4 | 0 | 1 |
2 | 2 | 0 | 0 |
2 | 3 | 0 | 0 |
Appendix A.3. Experiments on Other Instances
Product | Hot-Selling | Greedy Algorithm | Minimum Cost Flow | ||||
---|---|---|---|---|---|---|---|
ID | Area | LR | xgBoost | WDL | LR | xgBoost | WDL |
1 | 685 | 1049 | 965 | 976 | 965 | 1049 | 917 |
2 | 56 | 985 | 1268 | 1268 | 985 | 1268 | 996 |
3 | 991 | 1654 | 1706 | 1706 | 1654 | 1706 | 1654 |
4 | 2661 | 2716 | 2707 | 2714 | 2707 | 2716 | 2588 |
5 | 952 | 1082 | 1057 | 1057 | 1082 | 1057 | 1082 |
6 | 75 | 1408 | 990 | 992 | 990 | 1408 | 1408 |
7 | 774 | 359 | 382 | 381 | 382 | 362 | 756 |
8 | 867 | 884 | 883 | 883 | 884 | 883 | 883 |
9 | 1572 | 1184 | 1366 | 1367 | 1366 | 1182 | 1386 |
10 | 47 | 781 | 766 | 768 | 766 | 781 | 821 |
Total | 8680 | 12,102 | 12,090 | 12,112 | 12,465 | 12,103 | 12,491 |
Increase % | 0.00% | 39.42% | 39.29% | 39.54% | 43.61% | 39.44% | 43.91% |
Product | Hot-Selling | Greedy Algorithm | Minimum Cost Flow | ||||
---|---|---|---|---|---|---|---|
ID | Area | LR | xgBoost | WDL | LR | xgBoost | WDL |
1 | 16,433.1 | 22,310.7 | 23,006.4 | 21,830.9 | 22,430.7 | 23,174.3 | 21,950.9 |
2 | 1377.6 | 24,673.8 | 27,675.0 | 26,617.2 | 24,698.4 | 27,699.6 | 26,617.2 |
3 | 42,603.1 | 73,641.9 | 73,598.9 | 70,847.5 | 73,899.8 | 73,856.8 | 71,062.5 |
4 | 58,515.4 | 59,592.9 | 55,744.7 | 56,756.2 | 59,724.8 | 55,854.6 | 56,888.1 |
5 | 34,262.5 | 36,493.9 | 36,493.9 | 38,833.2 | 36,529.9 | 36,529.9 | 38,941.2 |
6 | 4208.3 | 79,002.9 | 79,002.9 | 79,002.9 | 79,002.9 | 79,002.9 | 79,002.9 |
7 | 123,066.0 | 57,717.0 | 60,738.0 | 119,886.0 | 57,558.0 | 60,579.0 | 119,409.0 |
8 | 251,421.3 | 25,6641.2 | 256,641.2 | 256,641.2 | 256,641.2 | 256,641.2 | 256,641.2 |
9 | 39,284.3 | 33,211.7 | 33,686.5 | 34,611.2 | 33,236.7 | 33,711.5 | 34,711.1 |
10 | 751.5 | 11,448.8 | 11,416.9 | 11,384.9 | 11,480.8 | 11,480.8 | 11,416.9 |
Total | 571,923.1 | 654,734.7 | 658,004.2 | 716,411.1 | 655,203.1 | 658,530.6 | 716,640.8 |
Increase % | 0.00% | 14.48% | 15.05% | 25.26% | 14.56% | 15.14% | 25.30% |
Product | Hot-Selling | Greedy Algorithm | Minimum Cost Flow | ||||
---|---|---|---|---|---|---|---|
ID | Area | LR | xgBoost | WDL | LR | xgBoost | WDL |
1 | 825 | 1314 | 499 | 1314 | 1314 | 501 | 1314 |
2 | 803 | 1113 | 1023 | 1333 | 1114 | 975 | 1333 |
3 | 768 | 157 | 1257 | 458 | 157 | 1257 | 458 |
4 | 1132 | 1801 | 1908 | 928 | 1801 | 1910 | 928 |
5 | 736 | 830 | 976 | 989 | 926 | 1080 | 1091 |
6 | 1007 | 747 | 777 | 754 | 747 | 777 | 754 |
7 | 1129 | 1862 | 1545 | 1857 | 1862 | 1554 | 1857 |
8 | 772 | 1279 | 1268 | 1279 | 1279 | 1268 | 1279 |
9 | 786 | 650 | 1273 | 1099 | 650 | 1283 | 1099 |
10 | 1184 | 73 | 1740 | 94 | 73 | 1753 | 94 |
Total | 9142 | 9826 | 12,266 | 10,105 | 9923 | 12,358 | 10,207 |
Increase % | 0.00% | 7.48% | 34.17% | 10.53% | 8.54% | 35.18% | 11.65% |
Product | Hot-Selling | Greedy Algorithm | Minimum Cost Flow | ||||
---|---|---|---|---|---|---|---|
ID | Area | LR | xgBoost | WDL | LR | xgBoost | WDL |
1 | 43,716.8 | 69,628.9 | 26,177.1 | 69,522.9 | 69,628.9 | 26,071.1 | 69,628.9 |
2 | 49,778.0 | 66,205.3 | 81,454.9 | 81,826.8 | 65,957.4 | 81,516.9 | 81,826.8 |
3 | 46,072.3 | 2039.7 | 75,347.4 | 22,496.3 | 1499.8 | 75,407.4 | 18,536.9 |
4 | 305,628.7 | 516,760.9 | 516,760.9 | 516,490.9 | 516,760.9 | 516,760.9 | 516,220.9 |
5 | 220,064.0 | 256,542.0 | 299,000.0 | 299,299.0 | 285,844.0 | 328,900.0 | 316,641.0 |
6 | 51,346.9 | 2906.4 | 38,140.5 | 30,594.0 | 2906.4 | 37,987.6 | 30,339.1 |
7 | 60,954.7 | 100,367.4 | 50,102.7 | 100,097.5 | 100,205.4 | 47,943.1 | 100,043.5 |
8 | 122,748.0 | 203,361.0 | 202,566.0 | 2,025,663.0 | 1279.0 | 203,361.0 | 203,361.0 |
9 | 25,930.1 | 132.0 | 2804.2 | 0.0 | 132.0 | 1121.7 | 0.0 |
10 | 54,452.2 | 92.0 | 32,514.9 | 0.0 | 92.0 | 29,433.6 | 0.0 |
Total | 980,691.7 | 1,218,035.5 | 1,324,868.5 | 1,322,893.3 | 1,246,387.6 | 1,348,503.2 | 1,336,598.0 |
Increase % | 0.00% | 24.20% | 35.10% | 34.89% | 27.09% | 37.51% | 36.29% |
Product | Hot-Selling | Greedy Algorithm | Minimum Cost Flow | ||||
---|---|---|---|---|---|---|---|
ID | Area | LR | xgBoost | WDL | LR | xgBoost | WDL |
1 | 378 | 67 | 326 | 1287 | 67 | 326 | 1286 |
2 | 107 | 71 | 195 | 1012 | 71 | 195 | 371 |
3 | 369 | 105 | 194 | 690 | 97 | 194 | 561 |
4 | 1208 | 983 | 972 | 1139 | 983 | 972 | 1138 |
5 | 1562 | 1342 | 1441 | 1425 | 1342 | 1441 | 2462 |
6 | 330 | 624 | 580 | 281 | 678 | 649 | 281 |
7 | 343 | 271 | 908 | 308 | 271 | 908 | 308 |
8 | 387 | 819 | 71 | 366 | 835 | 71 | 380 |
9 | 431 | 46 | 442 | 414 | 46 | 442 | 587 |
10 | 162 | 897 | 158 | 233 | 904 | 158 | 831 |
Total | 5277 | 5225 | 5287 | 7155 | 5294 | 5356 | 8205 |
Increase % | 0.00% | −0.99% | 0.19% | 35.59% | 0.32% | 1.50% | 55.49% |
Product | Hot-Selling | Greedy Algorithm | Minimum Cost Flow | ||||
---|---|---|---|---|---|---|---|
ID | Area | LR | xgBoost | WDL | LR | xgBoost | WDL |
1 | 5507.5 | 218.6 | 0.0 | 0.0 | 218.6 | 0.0 | 0.0 |
2 | 4486.5 | 2725.5 | 3857.6 | 2473.9 | 2641.6 | 3857.6 | 2473.9 |
3 | 15,125.3 | 3320.2 | 1680.6 | 655.8 | 3279.2 | 1680.6 | 573.9 |
4 | 326,147.9 | 491,651.8 | 492,461.8 | 492,191.8 | 496,511.6 | 505,421.3 | 505,691.3 |
5 | 467,038.0 | 760,058.0 | 760,955.0 | 758,563.0 | 760,058.0 | 762,450.0 | 762,749.0 |
6 | 131,670.0 | 248,976.0 | 234,213.0 | 243,789.0 | 260,946.0 | 256,557.0 | 248,577.0 |
7 | 119,707.0 | 314,100.0 | 317,241.0 | 317,241.0 | 317,241.0 | 317,241.0 | 317,241.0 |
8 | 13,928.1 | 2843.2 | 144.0 | 0.0 | 2807.2 | 144.0 | 0.0 |
9 | 25,855.7 | 5879.0 | 71,388.1 | 84,345.9 | 5759.0 | 68,208.6 | 84,465.9 |
10 | 4534.4 | 783.7 | 0.0 | 0.0 | 783.7 | 0.0 | 0.0 |
Total | 1,114,000.4 | 1,830,555.9 | 1,881,941.0 | 1,899,260.4 | 1,850,245.9 | 1,915,560.0 | 1,921,771.9 |
Increase % | 0.00% | 59.20% | 63.67% | 65.18% | 60.91% | 66.59% | 67.13% |
References
- Bolos, C.; Idemudia, E.C.; Mai, P.; Rasinghani, M.; Smith, S. Conceptual models on the effectiveness of e-marketing strategies in engaging consumers. J. Int. Technol. Inf. Manag. 2016, 25, 3. [Google Scholar] [CrossRef]
- Kundu, N.; Mustafa, F.; Chola, C. Artificial intelligence in retail marketing. In Artificial Intelligence for Business; Productivity Press: New York, NY, USA, 2023; pp. 86–107. [Google Scholar]
- Maria, V.; Aziz, A.F.; Rahmawati, D. Meningkatkan daya saing UMKM lokal melalui strategi pemasaran digital di era digital. OPTIMAL J. Ekon. Dan Manaj. 2024, 4, 208–220. [Google Scholar] [CrossRef]
- Thomas, M.; Goic, M.; Kalyanam, K. Long Lags and Large Returns: Experimental Evidence from Advertising to Businesses. Manag. Sci. 2025. [Google Scholar] [CrossRef]
- Chaparro-Peláez, J.; Hernández-García, Á.; Lorente-Páramo, Á.-J. May I have your attention, please? An investigation on opening effectiveness in e-mail marketing. Rev. Manag. Sci. 2022, 16, 2261–2284. [Google Scholar] [CrossRef]
- Merisavo, M.; Raulas, M. The impact of e-mail marketing on brand loyalty. J. Prod. Brand Manag. 2004, 13, 498–505. [Google Scholar] [CrossRef]
- Gummesson, E. Total Relationship Marketing; Routledge: Oxfordshire, UK, 2011. [Google Scholar]
- Debnath, A.; Hossan, M.Z.; Sharmin, S.; Hosain, M.S.; Johora, F.T.; Hossain, M. Analyzing and Forecasting of Real-Time Marketing Campaign Performance and ROI in the US Market. In Proceedings of the 2024 International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA), Bali, Indonesia, 17–19 December 2024; pp. 332–337. [Google Scholar]
- Li, X.; Yu, H.; Sun, C. Direct Mail or Bonded Warehouse? Logistics Mode Selection in Cross-Border E-Commerce under Exchange Rate Risk. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 2312–2342. [Google Scholar] [CrossRef]
- Deng, G.; Zhang, J.; Xu, Y. How e-commerce platforms build channel power: The role of AI resources and market-based assets. J. Bus. Ind. Mark. 2024, 39, 173–188. [Google Scholar] [CrossRef]
- Gavilan, D.; Martinez-Navarro, G. Exploring user’s experience of push notifications: A grounded theory approach. Qual. Mark. Res. Int. J. 2022, 25, 233–255. [Google Scholar] [CrossRef]
- He, X.; Liu, Q.; Jung, S. The impact of recommendation system on user satisfaction: A moderated mediation approach. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 448–466. [Google Scholar] [CrossRef]
- Chen, N.; Hu, M. Frontiers in service science: Data-driven revenue management: The interplay of data, model, and decisions. Serv. Sci. 2023, 15, 79–91. [Google Scholar] [CrossRef]
- Miao, X.; Li, Z.; Yan, Y.; Xu, A. A Tripartite Evolutionary Game-Based Cooperation Model of Cross-Border E-Commerce Logistics Alliances: A Case Study of China. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 37. [Google Scholar] [CrossRef]
- Kellerer, H.; Pferschy, U.; Pisinger, D. The multiple-choice knapsack problem. In Knapsack Problems; Springer: Berlin/Heidelberg, Germany, 2004; pp. 317–347. [Google Scholar]
- Lopez, S. Optimizing marketing ROI with predictive analytics: Harnessing big data and AI for data-driven decision making. J. Artif. Intell. Res. 2023, 3, 9–36. [Google Scholar]
- Alves Gomes, M.; Meisen, T. A review on customer segmentation methods for personalized customer targeting in e-commerce use cases. Inf. Syst. Bus. Manag. 2023, 21, 527–570. [Google Scholar] [CrossRef]
- Zhang, S.; Liao, P.; Ye, H.Q.; Zhou, Z. Dynamic marketing resource allocation with two-stage decisions. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 327–344. [Google Scholar] [CrossRef]
- Fu, M.; Chen, Q.; Lin, W.; Wang, P.; Zhang, W. Constructing a scene-based knowledge system for E-commerce industries: Business analysis and challenges. Data Intell. 2019, 1, 224–237. [Google Scholar] [CrossRef]
- Chen, Y.L.; Kuo, M.H.; Wu, S.Y.; Tang, K. Discovering recency, frequency, and monetary (RFM) sequential patterns from customers’ purchasing data. Electron. Commer. Res. Appl. 2009, 8, 241–251. [Google Scholar] [CrossRef]
- Saura, J.R.; Palacios-Marqués, D.; Ribeiro-Soriano, D. Digital marketing in SMEs via data-driven strategies: Reviewing the current state of research. J. Small Bus. Manag. 2023, 61, 1278–1313. [Google Scholar] [CrossRef]
- Linden, G.; Smith, B.; York, J. Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet Comput. 2003, 7, 76–80. [Google Scholar] [CrossRef]
- deWet, S.; Ou, J. Finding users who act alike: Transfer learning for expanding advertiser audiences. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2251–2259. [Google Scholar]
- Ma, Q.; Wen, M.; Xia, Z.; Chen, D. A sub-linear, massive-scale look-alike audience extension system a massive-scale look-alike audience extension. In Proceedings of the Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications, PMLR, San Francisco, CA, USA, 14 August 2016; pp. 51–67. [Google Scholar]
- Gao, Y.; Gupta, V.; Yan, J.; Shi, C.; Tao, Z.; Xiao, P.; Wang, C.; Yu, S.; Rosales, R.; Muralidharan, A.; et al. Near real-time optimization of activity-based notifications. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 283–292. [Google Scholar]
- Iqbal, S.T.; Bailey, B.P. Oasis: A framework for linking notification delivery to the perceptual structure of goal-directed tasks. ACM Trans. Comput. Hum. Interact. (TOCHI) 2010, 17, 1–28. [Google Scholar] [CrossRef]
- Zhou, H.; Li, S.; Jiang, G.; Zheng, J.; Wang, D. Direct heterogeneous causal learning for resource allocation problems in marketing. In Proceedings of the AAAI Conference on Artificial Intelligence, Montreal, QC, Canada, 8–10 August 2023; Volume 37, pp. 5446–5454. [Google Scholar]
- Yuan, J.; Mensah-Boateng, T.; Tang, S. Influencer Marketing Augmented Personalized Assortment Planning: A Two-stage Optimization Problem. In Proceedings of the International AAAI Conference on Web and Social Media, Buffalo, NY, USA, 3–6 June 2024; Volume 18, pp. 1753–1765. [Google Scholar]
- Lu, H.; Simester, D.; Zhu, Y. Optimizing scalable targeted marketing policies with constraints. Mark. Sci. 2025. [Google Scholar] [CrossRef]
- Albert, J.; Goldenberg, D. E-commerce promotions personalization via online multiple-choice knapsack with uplift modeling. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, GA, USA, 17–21 October 2022; pp. 2863–2872. [Google Scholar]
- Baardman, L.; Boroujeni, S.B.; Cohen-Hillel, T.; Panchamgam, K.; Perakis, G. Detecting customer trends for optimal promotion targeting. Manuf. Serv. Oper. Manag. 2023, 25, 448–467. [Google Scholar] [CrossRef]
- Wang, C.; Shi, X.; Xu, S.; Wang, Z.; Fan, Z.; Feng, Y.; You, A.; Chen, Y. A Multi-stage Framework for Online Bonus Allocation Based on Constrained User Intent Detection. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Long Beach, CA, USA, 6–10 August 2023; pp. 5028–5038. [Google Scholar]
- Liu, Y.; Zhou, C.; Zhang, P.; Pan, S.; Li, Z.; Chen, H. Decision-focused Graph Neural Networks for Combinatorial Optimization. arXiv 2024, arXiv:2406.03647. [Google Scholar]
- Nguyen, D.M.; Diep, N.T.; Nguyen, T.Q.; Le, H.B.; Nguyen, T.; Nguyen, T.; Nguyen, T.; Ho, N.; Xie, P.; Wattenhofer, R.; et al. Logra-med: Long context multi-graph alignment for medical vision-language model. arXiv 2024, arXiv:2410.02615. [Google Scholar]
- Elmachtoub, A.N.; Grigas, P. Smart “predict, then optimize”. Manag. Sci. 2022, 68, 9–26. [Google Scholar] [CrossRef]
- Zhou, H.; Huang, R.; Li, S.; Jiang, G.; Zheng, J.; Cheng, B.; Lin, W. Decision focused causal learning for direct counterfactual marketing optimization. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Barcelona, Spain, 25–29 August 2024; pp. 6368–6379. [Google Scholar]
- Yan, Z.; Wang, S.; Zhou, G.; Lin, J.; Jiang, P. An end-to-end framework for marketing effectiveness optimization under budget constraint. arXiv 2023, arXiv:2302.04477. [Google Scholar]
- Harris, L.C.; Ogbonna, E. The organization of marketing: A study of decentralized, devolved and dispersed marketing activity. J. Manag. Stud. 2003, 40, 483–512. [Google Scholar] [CrossRef]
- Anand, R.; Aggarwal, D.; Kumar, V. A comparative analysis of optimization solvers. J. Stat. Manag. Syst. 2017, 20, 623–635. [Google Scholar] [CrossRef]
- Kovács, P. Minimum-cost flow algorithms: An experimental evaluation. Optim. Methods Softw. 2015, 30, 94–127. [Google Scholar] [CrossRef]
- Guercini, S.; Freeman, S.M. How international marketers make decisions: Exploring approaches to learning and using heuristics. Int. Mark. Rev. 2023, 40, 429–451. [Google Scholar] [CrossRef]
- Deldjoo, Y.; Nazary, F.; Ramisa, A.; Mcauley, J.; Pellegrini, G.; Bellogin, A.; Noia, T.D. A review of modern fashion recommender systems. ACM Comput. Surv. 2023, 56, 1–37. [Google Scholar] [CrossRef]
- Zhang, X.; Kumar, V.; Cosguner, K. Dynamically managing a profitable email marketing program. J. Mark. Res. 2017, 54, 851–866. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. In Handbook of the Fundamentals of Financial Decision Making: Part I; World Scientific: Singapore, 2013; pp. 99–127. [Google Scholar]
- Wright, R. Logistic regression. In Reading and Understanding Multivariate Statistics; American Psychological Association: Washington, DC, USA, 1995. [Google Scholar]
- Ester, M.; Kriegel, H.; Xu, X. XGBoost: A scalable tree boosting system. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; p. 785. [Google Scholar]
- Cheng, H.T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M.; et al. Wide & deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, Boston, MA, USA, 15 September 2016; pp. 7–10. [Google Scholar]
- Shen, W. DeepCTR: Easy-to-Use, Modular and Extendible Package of Deep-Learning Based CTR Models. 2017. Available online: https://github.com/shenweichen/deepctr (accessed on 15 January 2025).
- Zeybek, Ö.; Ülengin, B. The effect of sales promotions intensity on volume and variability in category sales of large retailers. J. Mark. Anal. 2022, 1–11. [Google Scholar] [CrossRef]
- Ahuja, R.K.; Magnanti, T.L.; Orlin, J.B. Network Flows: Theory, Algorithms, and Applications; Prentice Hall: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Edmonds, J.; Karp, R.M. Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM (JACM) 1972, 19, 248–264. [Google Scholar] [CrossRef]
- Karp, R.M. Reducibility among combinatorial problems. In 50 Years of Integer Programming 1958–2008: From the Early Years to the State-of-the-Art; Springer: Berlin/Heidelberg, Germany, 2009; pp. 219–241. [Google Scholar]
- Moore, E.F. The shortest path through a maze. In Proceedings of the International Symposium on the Theory of Switching, Cambridge, UK, 2–5 April 1959; Harvard University Press: London, UK, 1959; pp. 285–292. [Google Scholar]
- Goldberg, A.V.; Tarjan, R.E. Solving minimum-cost flow problems by successive approximation. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, New York, NY, USA, 1 January 1987; pp. 7–18. [Google Scholar]
- Ford, L.R., Jr.; Fulkerson, D.R. A suggested computation for maximal multi-commodity network flows. Manag. Sci. 2004, 50, 1778–1780. [Google Scholar] [CrossRef]
- Simester, D.; Timoshenko, A.; Zoumpoulis, S.I. Targeting prospective customers: Robustness of machine-learning methods to typical data challenges. Manag. Sci. 2020, 66, 2495–2522. [Google Scholar] [CrossRef]
- Lin, H.; Ji, H. Improved Wide&Deep Recommendation Algorithm for User Behavioural Characteristics. In Proceedings of the 13th International Conference of Information and Communication Technology (ICTech), Xiamen, China, 12–14 April 2024; pp. 234–238. [Google Scholar]
- Grinsztajn, L.; Oyallon, E.; Varoquaux, G. Why do tree-based models still outperform deep learning on typical tabular data? In Proceedings of the NIPS’22: 36th International Conference on Neural Information Processing Systems, New Orleans, LA, USA, 28 November–9 December 2022; Volume 35, pp. 507–520. [Google Scholar]
- Wu, J.; Li, Y.; Ma, Y. Comparison of XGBoost and the neural network model on the class-balanced datasets. In Proceedings of the IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC), Greenville, AC, USA, 12–14 November 2021; pp. 457–461. [Google Scholar]
- Kotary, J.; Fioretto, F.; Van Hentenryck, P.; Wilder, B. End-to-end constrained optimization learning: A survey. arXiv 2021, arXiv:2103.16378. [Google Scholar]
- Wang, X.; Ferreira, F.A.F.; Yan, P. A multi-objective optimization approach for integrated risk-based internal audit planning. Ann. Oper. Res. 2025, 346, 1811–1840. [Google Scholar] [CrossRef]
- Esmeli, R.; Gokce, A. An Analysis of Consumer Purchase Behavior Following Cart Addition in E-Commerce Utilizing Explainable Artificial Intelligence. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 28. [Google Scholar] [CrossRef]
Response | Rate |
---|---|
receive notifications | - |
open notifications | about 20% |
click notifications | about 10% |
purchase products | about 5% |
Notation | Definition |
---|---|
label: . if user j has purchased product i, otherwise . | |
predictive model | |
n | total number of products available for promotion |
m | total number of users eligible for advertisements |
probability that user j purchases product i at the k-th promotion | |
decision variable: . if product i is sent to user j in the k-th promotion, otherwise . | |
selling price of product i | |
cost price of product i | |
maximum number of promotional messages allowed for product i | |
decay factor: a hyperparameter in that captures the diminishing effectiveness of consecutive promotions. | |
K | the maximum number of promotion times (periods) received by a user |
N | total budgeted number of promotional messages |
F | forbidden pairs: indicates that product i cannot be promoted to user j. |
Name | Type | Description |
---|---|---|
First-level category | Categorical | 16 categories |
Second-level category | Categorical | 32 categories |
Third-level category | Categorical | 128 categories |
Original price | Numerical | Original price |
Sell price | Numerical | Discounted price |
Feature | Type | Description |
---|---|---|
Country | Categorical | 160 countries/regions |
Max orig. price | Numeric | Max original price in orders |
Avg orig. price | Numeric | Average original price in orders |
Min orig. price | Numeric | Min original price in orders |
Max sell price | Numeric | Max sell price in orders |
Avg sell price | Numeric | Average sell price in orders |
Min sell price | Numeric | Min sell price in orders |
Model | Before | After |
---|---|---|
0 | 1 | |
1 | 0 | |
Objective Value |
Instance | Time for Calculating Purchase Probability | Time for Validating Allocation Plan |
---|---|---|
1 | 1 July 2021–31 July 2021 | 1 August 2021–7 August 2021 |
2 | 1 August 2021–31 August 2021 | 1 September 2021–7 September 2021 |
3 | 1 September 2021–30 September 2021 | 1 October 2021–7 October 2021 |
4 | 1 October 2021–31 October 2021 | 1 November 2021–7 November 2021 |
Product | Hot-Selling | Greedy Algorithm | Minimum Cost Flow | ||||
---|---|---|---|---|---|---|---|
ID | Area | LR | xgBoost | WDL | LR | xgBoost | WDL |
1 | 615 | 699 | 925 | 921 | 699 | 925 | 921 |
2 | 864 | 726 | 346 | 1138 | 726 | 344 | 1138 |
3 | 1233 | 1309 | 2038 | 597 | 1309 | 2037 | 597 |
4 | 649 | 785 | 1026 | 1079 | 785 | 1026 | 1079 |
5 | 601 | 970 | 450 | 991 | 970 | 449 | 991 |
6 | 667 | 102 | 1068 | 1071 | 102 | 1068 | 1071 |
7 | 640 | 1131 | 1054 | 1127 | 1131 | 1053 | 1127 |
8 | 539 | 266 | 617 | 611 | 622 | 713 | 652 |
9 | 580 | 754 | 939 | 966 | 976 | 939 | 976 |
10 | 699 | 1188 | 750 | 1188 | 1181 | 752 | 1181 |
Total | 7087 | 7930 | 9213 | 9703 | 8015 | 9306 | 9733 |
Increase % | 0.00% | 11.90% | 30.00% | 36.91% | 13.09% | 31.31% | 37.34% |
Product | Hot-Selling | Greedy Algorithm | Minimum Cost Flow | ||||
---|---|---|---|---|---|---|---|
ID | Area | LR | xgBoost | WDL | LR | xgBoost | WDL |
1 | 8960.6 | 29.1 | 0.0 | 1486.1 | 29.1 | 0.0 | 1486.1 |
2 | 36,279.4 | 30,610.7 | 48,666.4 | 60,087.7 | 30,610.7 | 48,708.4 | 60,129.7 |
3 | 53,006.7 | 57,219.7 | 89,376.2 | 78,069.8 | 56,832.8 | 89,462.2 | 78,155.8 |
4 | 48,019.5 | 80,131.2 | 80,131.2 | 79,909.2 | 80,131.2 | 80,131.2 | 79,909.2 |
5 | 23,433.0 | 37,118.5 | 24,485.7 | 24,095.8 | 36,494.6 | 24,485.7 | 24,095.8 |
6 | 33,343.3 | 53,439.3 | 53,539.3 | 52,989.4 | 53,439.3 | 53,539.3 | 53,339.3 |
7 | 172,793.6 | 305,358.7 | 305,358.7 | 305,358.7 | 305,358.7 | 305,358.7 | 305,358.7 |
8 | 161,161.0 | 80,431.0 | 190,463.0 | 187,473.0 | 103,753.0 | 217,672.0 | 219,466.0 |
9 | 15,074.2 | 18,504.9 | 22,429.4 | 23,235.1 | 18,530.9 | 23,339.0 | 23,053.1 |
10 | 34,943.0 | 59,388.1 | 59,388.1 | 59,388.1 | 59,388.1 | 59,388.1 | 59,388.1 |
Total | 587,014.2 | 722,231.2 | 873,838.0 | 872,093.0 | 744,568.4 | 902,084.6 | 904,381.9 |
Increase % | 0.00% | 23.03% | 48.86% | 48.56% | 26.84% | 53.67% | 54.06% |
Instance (# of Customers) | IP | MCF | GA |
---|---|---|---|
121400 (100) | 0.063 | 0.016 | 0.001 |
121401 (500) | 0.375 | 0.047 | 0.047 |
121402 (1000) | 0.359 | 0.172 | 0.031 |
121403 (5000) | 3.421 | 0.796 | 0.531 |
121404 (10,000) | 13.187 | 1.626 | 0.719 |
Type | IP | MCF |
---|---|---|
Binary variable | 0 | |
Continuous variable | 0 | |
Constraint |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Ye, H.-Q.; Zhu, W. Prediction and Optimization for Multi-Product Marketing Resource Allocation in Cross-Border E-Commerce. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 124. https://doi.org/10.3390/jtaer20020124
Xie Y, Ye H-Q, Zhu W. Prediction and Optimization for Multi-Product Marketing Resource Allocation in Cross-Border E-Commerce. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(2):124. https://doi.org/10.3390/jtaer20020124
Chicago/Turabian StyleXie, Yi, Heng-Qing Ye, and Wenbin Zhu. 2025. "Prediction and Optimization for Multi-Product Marketing Resource Allocation in Cross-Border E-Commerce" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 2: 124. https://doi.org/10.3390/jtaer20020124
APA StyleXie, Y., Ye, H.-Q., & Zhu, W. (2025). Prediction and Optimization for Multi-Product Marketing Resource Allocation in Cross-Border E-Commerce. Journal of Theoretical and Applied Electronic Commerce Research, 20(2), 124. https://doi.org/10.3390/jtaer20020124