Financial Anti-Fraud Based on Dual-Channel Graph Attention Network
Abstract
:1. Introduction
2. Literature Review
2.1. Review of Intelligent Recognition Research in Financial Anti-Fraud
2.2. Comprehensive Review of GNN Applications in the Financial Landscape
3. GNN Applications in Financial Anti-Fraud Research
3.1. Optimization Analysis of GNN Models Applied in Financial Anti-Fraud
3.2. Analysis of Privacy Protection with Blockchain
3.3. Construction and Analysis of a Financial Anti-Fraud Model Integrating Blockchain with GNN
4. Experiments
4.1. Experimental Environments and Evaluation
4.2. Analysis of Recognition Accuracy Results for Different Algorithms
4.3. Security Performance Analysis of the Model under Different Algorithms
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GAN | Generative Adversarial Network |
GBDT | Gradient-Boosting Decision Trees |
GBDT-DGAN | Gradient-Boosting Decision Trees–Dual-channel Graph Attention Network |
NAN | Node Attention Network |
BiLSTM | Bidirectional Long Short-Term Memory |
GNN | Graph Neural Network |
GCN | Graph Convolutional Network |
CNN | Convolutional Neural Network |
GAT | Graph Attention Network |
PoW | Proof of Work |
POS | Proof of Stake |
DPOS | Delegated Proof of Stake |
PBFT | Practical Byzantine Fault Tolerance |
References
- Ali, A.; Razak, S.A.; Othman, S.H.; Eisa, T.A.E.; Al-Dhaqm, A.; Nasser, M.; Elhassan, T.; Elshafie, H.; Saif, A. Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review. Appl. Sci. 2022, 12, 9637. [Google Scholar] [CrossRef]
- Ragazou, K.; Passas, I.; Garefalakis, A. It Is Time for Anti-Bribery: Financial Institutions Set the New Strategic “Roadmap” to Mitigate Illicit Practices and Corruption in the Market. Adm. Sci. 2022, 12, 166. [Google Scholar] [CrossRef]
- Hendri, N.; Sari, S.U. Sistematic Literature Review: The Strategy for Preventing Government Financial Report Fraud. JAK (J. Akunt.) Kaji. Ilm. Akunt. 2023, 10, 323–336. [Google Scholar] [CrossRef]
- Li, J.; Yang, D. Research on Financial Fraud Detection Models Integrating Multiple Relational Graphs. Systems 2023, 11, 539. [Google Scholar] [CrossRef]
- Ma, X.; Wu, J.; Xue, S.; Yang, J.; Zhou, C.; Sheng, Q.Z.; Xiong, H.; Akoglu, L. A comprehensive survey on graph anomaly detection with deep learning. IEEE Trans. Knowl. Data Eng. 2021, 35, 12012–12038. [Google Scholar] [CrossRef]
- Ashtiani, M.N.; Raahemi, B. Intelligent fraud detection in financial statements using machine learning and data mining: A systematic literature review. IEEE Access 2021, 10, 72504–72525. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Lv, Z.; Li, J. Medical image fusion method by deep learning. Int. J. Cogn. Comput. Eng. 2021, 2, 21–29. [Google Scholar] [CrossRef]
- Li, J.; Chang, Y.; Wang, Y.; Zhu, X. Tracking down financial statement fraud by analyzing the supplier-customer relationship network. Comput. Ind. Eng. 2023, 178, 109118. [Google Scholar] [CrossRef]
- Huo, H.; Guo, J.; Yang, X.; Lu, X.; Wu, X.; Li, Z.; Li, M.; Ren, J. An Accelerated Method for Protecting Data Privacy in Financial Scenarios Based on Linear Operation. Appl. Sci. 2023, 13, 1764. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, R. A Causal Graph-Based Approach for APT Predictive Analytics. Electronics 2023, 12, 1849. [Google Scholar] [CrossRef]
- Fang, W.; Li, X.; Zhou, P.; Yan, J.; Jiang, D.; Zhou, T. Deep learning anti-fraud model for internet loan: Where we are going. IEEE Access 2021, 9, 9777–9784. [Google Scholar] [CrossRef]
- Alarfaj, F.K.; Malik, I.; Khan, H.U.; Almusallam, N.; Ramzan, M.; Ahmed, M. Credit card fraud detection using state-of-the-art machine learning and deep learning algorithms. IEEE Access 2022, 10, 39700–39715. [Google Scholar] [CrossRef]
- Cheng, D.; Xiang, S.; Shang, C.; Zhang, Y.; Yang, F.; Zhang, L. Spatio-temporal attention-based neural network for credit card fraud detection. Proc. AAAI Conf. Artif. Intell. 2020, 34, 362–369. [Google Scholar] [CrossRef]
- Lei, X.; Mohamad, U.H.; Sarlan, A.; Shutaywi, M.; Daradkeh, Y.I.; Mohammed, H.O. Development of an intelligent information system for financial analysis depend on supervised machine learning algorithms. Inf. Process. Manag. 2022, 59, 103036. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J.; Xu, D.; Xu, L. Integrating Individual Factors to Construct Recognition Models of Consumer Fraud Victimization. Int. J. Environ. Res. Public Health 2022, 19, 461. [Google Scholar] [CrossRef] [PubMed]
- Verykios, V.S.; Stavropoulos, E.C.; Zorkadis, V.; Katsikatsos, G.; Sakkopoulos, E. Sensitive data hiding in financial anti-fraud process. Int. J. Electron. Gov. 2022, 14, 7–27. [Google Scholar] [CrossRef]
- Usman, A.; Naveed, N.; Munawar, S. Intelligent Anti-Money Laundering Fraud Control Using Graph-Based Machine Learning Model for the Financial Domain. J. Cases Inf. Technol. 2023, 25, 1–20. [Google Scholar] [CrossRef]
- Cheng, D.; Yang, F.; Xiang, S.; Liu, J. Financial time series forecasting with multi-modality graph neural network. Pattern Recognit. 2021, 121, 108218. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Yao, X.; Li, S.; Zhang, C.; Liu, P. A Dynamic Attributes-driven Graph Attention Network Modeling on Behavioral Finance for Stock Prediction. ACM Trans. Knowl. Discov. Data 2023, 18, 1–29. [Google Scholar] [CrossRef]
- Xu, C.; Huang, H.; Ying, X.; Gao, J.; Li, Z.; Zhang, P.; Xiao, J.; Zhang, J.; Luo, J. HGNN: Hierarchical graph neural network for predicting the classification of price-limit-hitting stocks. Inf. Sci. 2022, 607, 783–798. [Google Scholar] [CrossRef]
- Lazcano, A.; Herrera, P.J.; Monge, M. A Combined Model Based on Recurrent Neural Networks and Graph Convolutional Networks for Financial Time Series Forecasting. Mathematics 2023, 11, 224. [Google Scholar] [CrossRef]
- Sun, Q.; Wei, X.; Yang, X. GraphSAGE with deep reinforcement learning for financial portfolio optimization. Expert Syst. Appl. 2024, 238, 122027. [Google Scholar] [CrossRef]
- Varlamis, I.; Michail, D.; Glykou, F.; Tsantilas, P. A survey on the use of graph convolutional networks for combating fake news. Future Internet 2022, 14, 70. [Google Scholar] [CrossRef]
- Michail, D.; Kanakaris, N.; Varlamis, I. Detection of fake news campaigns using graph convolutional networks. Int. J. Inf. Manag. Data Insights 2022, 2, 100104. [Google Scholar] [CrossRef]
- Ghadimi, A.; Beigy, H. SGCSumm: An extractive multi-document summarization method based on pre-trained language model, submodularity, and graph convolutional neural networks. Expert Syst. Appl. 2023, 215, 119308. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, W.; Tian, X. Detecting Phishing Accounts on Ethereum Based on Transaction Records and EGAT. Electronics 2023, 12, 993. [Google Scholar] [CrossRef]
- Hu, X.; Chen, H.; Chen, H.; Li, X.; Zhang, J.; Liu, S. Mining Mobile Network Fraudsters with Augmented Graph Neural Networks. Entropy 2023, 25, 150. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, M.; Hu, Z.; Niu, H. Textual Emotional Tone and Financial Crisis Identification in Chinese Companies: A Multi-Source Data Analysis Based on Machine Learning. Appl. Sci. 2022, 12, 6662. [Google Scholar] [CrossRef]
- Kumari, V.; Bala, P.K.; Chakraborty, S. An Empirical Study of User Adoption of Cryptocurrency Using Blockchain Technology: Analysing Role of Success Factors like Technology Awareness and Financial Literacy. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 1580–1600. [Google Scholar] [CrossRef]
- Cucari, N.; Lagasio, V.; Lia, G.; Torriero, C. The impact of blockchain in banking processes: The Interbank Spunta case study. Technol. Anal. Strateg. 2022, 34, 138–150. [Google Scholar] [CrossRef]
- Metawa, N.; Alghamdi, M.I.; El-Hasnony, I.M.; Elhoseny, M. Return Rate Prediction in Blockchain Financial Products Using Deep Learning. Sustainability 2021, 13, 11901. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Chen, Y.; Zhang, W.; Liu, Z. A smart energy IoT model based on the Itsuku PoW technology. Results Eng. 2023, 18, 101147. [Google Scholar] [CrossRef]
- Ramos, S.; Pianese, F.; Leach, T.; Oliveras, E. A great disturbance in the crypto: Understanding cryptocurrency returns under attacks. Blockchain Res. Appl. 2021, 2, 100021. [Google Scholar] [CrossRef]
- Jiang, S.; Cao, J.; Wu, H.; Chen, K.; Liu, X. Privacy-preserving and efficient data sharing for blockchain-based intelligent transportation systems. Inf. Sci. 2023, 635, 72–85. [Google Scholar] [CrossRef]
- Wang, M.; Xie, Z.; Wen, X.; Li, J.; Zhou, K. Ethereum Smart Contract Vulnerability Detection Model Based on Triplet Loss and BiLSTM. Electronics 2023, 12, 2327. [Google Scholar] [CrossRef]
- Cheah, P.C.Y.; Yang, Y.; Lee, B.G. Enhancing Financial Fraud Detection through Addressing Class Imbalance Using Hybrid SMOTE-GAN Techniques. Int. J. Financ. Stud. 2023, 11, 110. [Google Scholar] [CrossRef]
Algorithm | Type | Features |
---|---|---|
Proof of Work (POW) | POW |
|
Proof of Stake (POS) | POS |
|
Delegated Proof of Stake (DPOS) | DPOS |
|
Practical Byzantine Fault Tolerance (PBFT) | PBFT |
|
Users | Number of Comments (within Hours) | Average Comment Length | Last Activity Time | Abnormal Identification |
---|---|---|---|---|
User A | 100 | 50 | 15 January 2022 | Yes |
User B | 50 | 40 | 14 January 2022 | No |
User C | 10 | 60 | 15 January 2022 | No |
User D | 80 | 45 | 15 January 2022 | Yes |
User E | 120 | 55 | 14 January 2022 | Yes |
User F | 30 | 48 | 15 January 2022 | No |
User G | 60 | 52 | 14 January 2022 | No |
User H | 90 | 42 | 15 January 2022 | Yes |
User I | 25 | 58 | 14 January 2022 | No |
User J | 110 | 49 | 15 January 2022 | Yes |
User Pairs | Content Similarity | Abnormal Identification |
---|---|---|
(User 1, User 2) | 0.8 | Yes |
(User 1, User 3) | 0.5 | No |
(User 2, User 3) | 0.9 | Yes |
(User 4, User 5) | 0.7 | No |
(User 5, User 6) | 0.85 | Yes |
(User 7, User 8) | 0.6 | No |
(User 8, User 9) | 0.75 | Yes |
(User 10, User 11) | 0.88 | Yes |
Time | Transaction Volume of Merchant X | Transaction Volume of Merchant Y | Abnormal Identification |
---|---|---|---|
00:00–01:00 | 1000 | 500 | Yes |
01:00–02:00 | 500 | 2000 | No |
02:00–03:00 | 800 | 300 | Yes |
03:00–04:00 | 1200 | 400 | Yes |
04:00–05:00 | 600 | 600 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, S.; Lee, S. Financial Anti-Fraud Based on Dual-Channel Graph Attention Network. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 297-314. https://doi.org/10.3390/jtaer19010016
Wei S, Lee S. Financial Anti-Fraud Based on Dual-Channel Graph Attention Network. Journal of Theoretical and Applied Electronic Commerce Research. 2024; 19(1):297-314. https://doi.org/10.3390/jtaer19010016
Chicago/Turabian StyleWei, Sizheng, and Suan Lee. 2024. "Financial Anti-Fraud Based on Dual-Channel Graph Attention Network" Journal of Theoretical and Applied Electronic Commerce Research 19, no. 1: 297-314. https://doi.org/10.3390/jtaer19010016
APA StyleWei, S., & Lee, S. (2024). Financial Anti-Fraud Based on Dual-Channel Graph Attention Network. Journal of Theoretical and Applied Electronic Commerce Research, 19(1), 297-314. https://doi.org/10.3390/jtaer19010016