Business Data Sharing through Data Marketplaces: A Systematic Literature Review †
Abstract
:1. Introduction
2. Research Approach
3. Results: STOF Model Categorization
3.1. The Service Domain
3.2. The Technical Domain
Topic | Description | Article Reference |
---|---|---|
Architecture | Proposing building blocks of technical components for data marketplaces. | [14,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46] |
Computational pricing | Discussing technical aspects such as algorithm or query techniques to price the data. | [48,49,50,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78] |
Data-as-a-Service | Exploring the topic of Application Programming Interfaces (APIs) to enable data providers and buyers to use services of data marketplaces. | [79,80] |
Data contracts | Discovering the models to develop formal arrangements between data providers and data buyers to specify data usage. | [81,82] |
Information retrieval | Discussing data discovery techniques in data marketplaces. | [83,84,85,86,87,88] |
Security and privacy | Proposing technical enforcements to guarantee security and privacy. | [89,90,91,92,93,94,95] |
3.3. The Organization Domain
Topic | Description | Article Reference |
---|---|---|
Classification frameworks | Developing a business model taxonomy for data marketplaces. | [2,96,97] |
Data ecosystems | Examining ecosystem structures that are relevant to data marketplaces, such as structural characteristics (i.e., how data interacts) in networks. | [3,6,99,100,101] |
Demographic aspects | Describing the distribution of specific actor properties, such as population. | [102,103,104] |
Governance | Exploring governing processes by certain actors (e.g., data marketplace operators) via several mechanisms, such as norms or power. | [106,107,108,109,110,111,112,113,114,115,116,117] |
Social implications | Discussing data marketplace impacts for society. | [5,118,119,120,121,122,123] |
3.4. The Finance Domain
4. Discussion
4.1. Domination of Technical Research in the Data Marketplace Literature
4.2. Service Domain Aspects
4.3. Organizational Domain Aspects
4.4. Finance Domain Aspects
4.5. Research Approaches
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. A European Strategy for Data. 2020. Available online: https://digital-strategy.ec.europa.eu/en/policies/strategy-data (accessed on 17 November 2021).
- Fruhwirth, M.; Rachinger, M.; Prlja, E. Discovering Business Models of Data Marketplaces. In Proceedings of the 53rd Hawaii International Conference on System Sciences, Maui, HI, USA, 7–10 January 2020; pp. 5738–5747. [Google Scholar]
- Koutroumpis, P.; Leiponen, A.; Thomas, L.D.W. Markets for data. Ind. Corp. Chang. 2020, 29, 645–660. [Google Scholar] [CrossRef]
- Spiekermann, M. Data Marketplaces: Trends and Monetisation of Data Goods. Intereconomics 2019, 54, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Virkar, S.; Viale Pereira, G.; Vignoli, M. Investigating the Social, Political, Economic and Cultural Implications of Data Trading; Springer International Publishing: Cham, Switzerland, 2019; pp. 215–229. [Google Scholar]
- Thomas, L.; Leiponen, A. Big data commercialization. IEEE Eng. Manag. Rev. 2016, 44, 74–90. [Google Scholar] [CrossRef]
- Van de Ven, M.; Abbas, A.E.; Kwee, Z.; de Reuver, M. Creating a Taxonomy of Business Models for Data Marketplaces. In Proceedings of the 34th Bled eConference-Digital Support from Crisis to Progressive Change, Online, 27–30 June 2021; pp. 313–325. [Google Scholar]
- Okoli, C. A guide to conducting a standalone systematic literature review. Commun. Assoc. Inf. Syst. 2015, 37, 879–910. [Google Scholar] [CrossRef] [Green Version]
- Solaimani, S.; Keijzer-Broers, W.; Bouwman, H. What we do–and don’t–know about the Smart Home: An analysis of the Smart Home literature. Indoor Built Environ. 2015, 24, 370–383. [Google Scholar] [CrossRef]
- Champieux, R. PlumX. J. Med. Libr. Assoc. JMLA 2015, 103, 63–64. [Google Scholar] [CrossRef] [Green Version]
- Wouters, P.; Zahedi, Z.; Costas, R. Social media metrics for new research evaluation. In Springer Handbook of Science and Technology Indicators; Springer: Cham, Switzerland, 2019; pp. 687–713. [Google Scholar]
- Bouwman, H.; Faber, E.; Haaker, T.; Kijl, B.; De Reuver, M. Conceptualizing the STOF Model; Springer: Berlin/Heidelberg, Germany, 2008; pp. 31–70. [Google Scholar]
- Osterwalder, A.; Pigneur, Y. Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Munoz-Arcentales, A.; López-Pernas, S.; Pozo, A.; Alonso, Á.; Salvachúa, J.; Huecas, G. An Architecture for Providing Data Usage and Access Control in Data Sharing Ecosystems. Procedia Comput. Sci. 2019, 160, 590–597. [Google Scholar] [CrossRef]
- Demchenko, Y.; Los, W.; de Laat, C. Data as economic goods: Definitions, properties, challenges, enabling technologies for future data markets. ITU J. ICT Discov. 2018, 1, 1–10. [Google Scholar]
- Zhang, R.; Indulska, M.; Sadiq, S. Discovering Data Quality Problems. Bus. Inf. Syst. Eng. 2019, 61, 575–593. [Google Scholar] [CrossRef] [Green Version]
- Schomakers, E.-M.; Lidynia, C.; Ziefle, M. All of me? Users’ preferences for privacy-preserving data markets and the importance of anonymity. Electron. Mark. 2020, 30, 649–665. [Google Scholar] [CrossRef] [Green Version]
- Kamleitner, B.; Mitchell, V.-W. Can consumers experience ownership for their personal data? From issues of scope and invisibility to agents handling our digital blueprints. In Psychological Ownership and Consumer Behavior; Springer: Cham, Switzerland, 2018; pp. 91–118. [Google Scholar]
- Spiekermann, S.; Korunovska, J. Towards a value theory for personal data. J. Inf. Technol. 2017, 32, 62–84. [Google Scholar] [CrossRef] [Green Version]
- Perera, C.; Wakenshaw, S.Y.; Baarslag, T.; Haddadi, H.; Bandara, A.K.; Mortier, R.; Crabtree, A.; Ng, I.C.; McAuley, D.; Crowcroft, J. Valorising the IoT databox: Creating value for everyone. Trans. Emerg. Telecommun. Technol. 2017, 28, 1–17. [Google Scholar] [CrossRef]
- Anderson, N.G.; Pollack, J.; Williams, D. The value of healthcare data in ophthalmology. Curr. Opin. Ophthalmol. 2014, 25, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.C. What’s your anonymity worth? Establishing a marketplace for the valuation and control of individuals’ anonymity and personal data. Digit. Policy Regul. Gov. 2017, 19, 353–366. [Google Scholar] [CrossRef]
- Mamoshina, P.; Ojomoko, L.; Yanovich, Y.; Ostrovski, A.; Botezatu, A.; Prikhodko, P.; Izumchenko, E.; Aliper, A.; Romantsov, K.; Zhebrak, A.; et al. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget 2018, 9, 5665–5690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attard, J.; Orlandi, F.; Auer, S. Data value networks: Enabling a new data ecosystem. In Proceedings of the 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI), Omaha, NE, USA, 13–16 October 2016; pp. 453–456. [Google Scholar]
- Attard, J.; Orlandi, F.; Auer, S. Exploiting the value of data through data value networks. In Proceedings of the 10th International Conference on Theory and Practice of Electronic Governance, New Delhi, India, 7–9 March 2017; pp. 475–484. [Google Scholar]
- Hutchings, A.; Holt, T.J. A Crime Script Analysis of the Online Stolen Data Market: Table 1. Br. J. Criminol. 2015, 55, 596–614. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, J.; Li, C.; Ren, W. FaDe: A Blockchain-Based Fair Data Exchange Scheme for Big Data Sharing. Future Internet 2019, 11, 225. [Google Scholar] [CrossRef] [Green Version]
- Lawrenz, S.; Sharma, P.; Rausch, A. Blockchain Technology as an Approach for Data Marketplaces. In Proceedings of the 2019 International Conference on Blockchain Technology, Honolulu, HI, USA, 15–18 March 2019; pp. 55–59. [Google Scholar]
- Jeong, B.-G.; Youn, T.-Y.; Jho, N.-S.; Shin, S.U. Blockchain-Based Data Sharing and Trading Model for the Connected Car. Sensors 2020, 20, 3141. [Google Scholar] [CrossRef]
- López, D.; Farooq, B. A multi-layered blockchain framework for smart mobility data-markets. Transp. Res. Part C Emerg. Technol. 2020, 111, 588–615. [Google Scholar] [CrossRef] [Green Version]
- Ha, M.; Kwon, S.; Lee, Y.J.; Shim, Y.; Kim, J. Where WTS meets WTB: A Blockchain-based Marketplace for Digital Me to trade users’ private data. Pervasive Mob. Comput. 2019, 59, 1–15. [Google Scholar] [CrossRef]
- Özyilmaz, K.R.; Doğan, M.; Yurdakul, A. IDMoB: IoT data marketplace on blockchain. In Proceedings of the 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), Zug, Switzerland, 20–22 June 2018; pp. 11–19. [Google Scholar]
- Park, J.-S.; Youn, T.-Y.; Kim, H.-B.; Rhee, K.-H.; Shin, S.-U. Smart Contract-Based Review System for an IoT Data Marketplace. Sensors 2018, 18, 3577. [Google Scholar] [CrossRef] [Green Version]
- De la Vega, F.; Soriano, J.; Jimenez, M.; Lizcano, D. A Peer-to-Peer Architecture for Distributed Data Monetization in Fog Computing Scenarios. Wirel. Commun. Mob. Comput. 2018, 2018, 5758741. [Google Scholar] [CrossRef]
- Wörner, D. Design of a Real-Time Data Market Based on the 21 Bitcoin Computer; Springer International Publishing: Cham, Switzerland, 2016; pp. 228–232. [Google Scholar]
- Ramachandran, G.S.; Radhakrishnan, R.; Krishnamachari, B. Towards a Decentralized Data Marketplace for Smart Cities. In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018. [Google Scholar]
- Huang, K.; Zhang, X.; Mu, Y.; Rezaeibagha, F.; Wang, X.; Li, J.; Xia, Q.; Qin, J. EVA: Efficient Versatile Auditing Scheme for IoT-Based Datamarket in Jointcloud. IEEE Internet Things J. 2020, 7, 882–892. [Google Scholar] [CrossRef]
- Roman, D.; Stefano, G. Towards a Reference Architecture for Trusted Data Marketplaces: The Credit Scoring Perspective. In Proceedings of the 2016 2nd International Conference on Open and Big Data (OBD), Vienna, Austria, 22–24 August 2016; pp. 95–101. [Google Scholar]
- Nasonov, D.; Visheratin, A.A.; Boukhanovsky, A. Blockchain-Based Transaction Integrity in Distributed Big Data Marketplace; Springer International Publishing: Cham, Switzerland, 2018; pp. 569–577. [Google Scholar]
- Masseport, S.; Lartigau, J.; Darties, B.; Giroudeau, R. Proof of usage: User-centric consensus for data provision and exchange. Ann. Telecommun. 2020, 75, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Matzutt, R.; Müllmann, D.; Zeissig, E.-M.; Horst, C.; Kasugai, K.; Lidynia, S.; Wieninger, S.; Ziegeldorf, J.H.; Gudergan, G.; Wehrle, K. myneData: Towards a trusted and user-controlled ecosystem for sharing personal data. Informatik 2017, P275, 1073–1084. [Google Scholar] [CrossRef]
- Mišura, K.; Žagar, M. Data marketplace for Internet of Things. In Proceedings of the 2016 International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 12–14 October 2016; pp. 255–260. [Google Scholar]
- Sánchez, L.; Lanza, J.; Santana, J.; Agarwal, R.; Raverdy, P.; Elsaleh, T.; Fathy, Y.; Jeong, S.; Dadoukis, A.; Korakis, T.; et al. Federation of Internet of Things Testbeds for the Realization of a Semantically-Enabled Multi-Domain Data Marketplace. Sensors 2018, 18, 3375. [Google Scholar] [CrossRef] [Green Version]
- Pillmann, J.; Wietfeld, C.; Zarcula, A.; Raugust, T.; Alonso, D.C. Novel common vehicle information model (CVIM) for future automotive vehicle big data marketplaces. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1910–1915. [Google Scholar]
- Li, Y.; Sun, H.; Dong, B. Cost-efficient data acquisition on online data marketplaces for correlation analysis. Proc. VLDB Endow 2018, 12, 362–375. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; London, P.; Ziani, J.; Wierman, A. Datum: Managing Data Purchasing and Data Placement in a Geo-Distributed Data Market. IEEE ACM Trans. Netw. 2018, 26, 893–905. [Google Scholar] [CrossRef]
- Fricker, S.A.; Maksimov, Y.V. Pricing of data products in data marketplaces. In Proceedings of the International Conference of Software Business, Tallinn, Estonia, 11–12 June 2017; pp. 49–66. [Google Scholar]
- Agarwal, A.; Dahleh, M.; Sarkar, T. A marketplace for data: An algorithmic solution. In Proceedings of the 2019 ACM Conference on Economics and Computation, Phoenix, AZ, USA, 24–28 June 2019; pp. 701–726. [Google Scholar]
- Niyato, D.; Alsheikh, M.A.; Wang, P.; Kim, D.I.; Han, Z. Market model and optimal pricing scheme of big data and Internet of Things (IoT). In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6. [Google Scholar]
- Liu, K.; Qiu, X.; Chen, W.; Chen, X.; Zheng, Z. Optimal Pricing Mechanism for Data Market in Blockchain-Enhanced Internet of Things. IEEE Internet Things J. 2019, 6, 9748–9761. [Google Scholar] [CrossRef]
- Koutris, P.; Upadhyaya, P.; Balazinska, M.; Howe, B.; Suciu, D. Query-Based Data Pricing. J. ACM 2015, 62, 1–44. [Google Scholar] [CrossRef]
- Koutris, P.; Upadhyaya, P.; Balazinska, M.; Howe, B.; Suciu, D. Toward practical query pricing with QueryMarket. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, 22–27 June 2013; pp. 613–624. [Google Scholar]
- Niu, C.; Zheng, Z.; Wu, F.; Tang, S.; Chen, G. Online Pricing with Reserve Price Constraint for Personal Data Markets. IEEE Trans. Knowl. Data Eng. 2020. [Google Scholar] [CrossRef]
- Niu, C.; Zheng, Z.; Tang, S.; Gao, X.; Wu, F. Making Big Money from Small Sensors: Trading Time-Series Data under Pufferfish Privacy. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019. [Google Scholar]
- Zheng, Z.; Peng, Y.; Wu, F.; Tang, S.; Chen, G. ARETE: On Designing Joint Online Pricing and Reward Sharing Mechanisms for Mobile Data Markets. IEEE Trans. Mob. Comput. 2020, 19, 769–787. [Google Scholar] [CrossRef]
- Zheng, Z.; Peng, Y.; Wu, F.; Tang, S.; Chen, G. An online pricing mechanism for mobile crowdsensing data markets. In Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Chennai, India, 10–14 July 2017; pp. 1–10. [Google Scholar]
- Liu, Z.; Hacigümüs, H. Online Optimization and Fair Costing for Dynamic Data Sharing in a Cloud Data Market. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, Snowbird, UT, USA, 22–27 June 2014; pp. 1359–1370. [Google Scholar]
- Sakr, M. A data model and algorithms for a spatial data marketplace. Int. J. Geogr. Inf. Sci. 2018, 32, 2140–2168. [Google Scholar] [CrossRef]
- Wang, X.; Wei, X.; Liu, Y.; Gao, S. On pricing approximate queries. Inf. Sci. 2018, 453, 198–215. [Google Scholar] [CrossRef]
- Upadhyaya, P.; Balazinska, M.; Suciu, D. Price-optimal querying with data APIs. Proc. VLDB Endow. 2016, 9, 1695–1706. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.; Wu, H.; Bao, Z.; Bressan, S.; Valduriez, P. The Price Is Right; Springer: Berlin/Heidelberg, Germany, 2013; pp. 380–394. [Google Scholar]
- Wang, X.; Wei, X.; Gao, S.; Liu, Y.; Li, Z. A novel auction-based query pricing schema. Int. J. Parallel Program. 2019, 47, 759–780. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, M. Data pricing strategy based on data quality. Comput. Ind. Eng. 2017, 112, 1–10. [Google Scholar] [CrossRef]
- Stahl, F.; Vossen, G. Name your own price on data marketplaces. Informatica 2017, 28, 155–180. [Google Scholar] [CrossRef] [Green Version]
- Stahl, F.; Vossen, G. Fair Knapsack Pricing for Data Marketplaces; Springer International Publishing: Cham, Switzerland, 2016; pp. 46–59. [Google Scholar]
- Tang, R.; Shao, D.; Bressan, S.; Valduriez, P. What You Pay for Is What You Get; Springer: Berlin/Heidelberg, Germany, 2013; pp. 395–409. [Google Scholar]
- Tang, R.; Amarilli, A.; Senellart, P.; Bressan, S. A Framework for Sampling-Based XML Data Pricing; Springer: Berlin/Heidelberg, Germany, 2016; pp. 116–138. [Google Scholar]
- Tang, R.; Amarilli, A.; Senellart, P.; Bressan, S. Get a Sample for a Discount; Springer International Publishing: Cham, Switzerland, 2014; pp. 20–34. [Google Scholar]
- Cao, X.; Chen, Y.; Liu, K.R. An iterative auction mechanism for data trading. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 5850–5854. [Google Scholar]
- Cao, X.; Chen, Y.; Liu, K.J.R. Data Trading With Multiple Owners, Collectors, and Users: An Iterative Auction Mechanism. IEEE Trans. Signal Inf. Process. Over Netw. 2017, 3, 268–281. [Google Scholar] [CrossRef]
- Zheng, Z.; Peng, Y.; Wu, F.; Tang, S.; Chen, G. Trading Data in the Crowd: Profit-Driven Data Acquisition for Mobile Crowdsensing. IEEE J. Sel. Areas Commun. 2017, 35, 486–501. [Google Scholar] [CrossRef]
- Zeng, Y.; Ohsawa, Y. Re-discover Values of Data Using Data Jackets by Combining Cluster with Text Analysis. Procedia Comput. Sci. 2017, 112, 2195–2203. [Google Scholar] [CrossRef]
- Oh, H.; Park, S.; Lee, G.M.; Choi, J.K.; Noh, S. Competitive Data Trading Model With Privacy Valuation for Multiple Stakeholders in IoT Data Markets. IEEE Internet Things J. 2020, 7, 3623–3639. [Google Scholar] [CrossRef] [Green Version]
- Oh, H.; Park, S.; Lee, G.M.; Heo, H.; Choi, J.K. Personal Data Trading Scheme for Data Brokers in IoT Data Marketplaces. IEEE Access 2019, 7, 40120–40132. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, C.; Qian, Y.; Zhao, Y.; Li, J.; Ren, Y. Dynamic Privacy Pricing: A Multi-Armed Bandit Approach With Time-Variant Rewards. IEEE Trans. Inf. Forensics Secur. 2017, 12, 271–285. [Google Scholar] [CrossRef]
- Hu, J.; Yang, K.; Wang, K.; Zhang, K. A Blockchain-Based Reward Mechanism for Mobile Crowdsensing. IEEE Trans. Comput. Soc. Syst. 2020, 7, 178–191. [Google Scholar] [CrossRef]
- Liu, K.; Chen, W.; Zheng, Z.; Li, Z.; Liang, W. A Novel Debt-Credit Mechanism for Blockchain-Based Data-Trading in Internet of Vehicles. IEEE Internet Things J. 2019, 6, 9098–9111. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, C.; Xing, C. Big Data Market Optimization Pricing Model Based on Data Quality. Complexity 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Vu, Q.H.; Pham, T.-V.; Truong, H.-L.; Dustdar, S.; Asal, R. Demods: A description model for data-as-a-service. In Proceedings of the 2012 IEEE 26th International Conference on Advanced Information Networking and Applications, Fukuoka, Japan, 26–29 March 2012; pp. 605–612. [Google Scholar]
- Truong, H.-L.; Dustdar, S.; Gotze, J.; Fleuren, T.; Muller, P.; Tbahriti, S.-E.; Mrissa, M.; Ghedira, C. Exchanging data agreements in the daas model. In Proceedings of the 2011 IEEE Asia-Pacific Services Computing Conference, Jeju, Korea, 12–15 December 2011; pp. 153–160. [Google Scholar]
- Truong, H.L.; Comerio, M.; Paoli, F.D.; Gangadharan, G.R.; Dustdar, S. Data contracts for cloud-based data marketplaces. Int. J. Comput. Sci. Eng. 2012, 7, 280. [Google Scholar] [CrossRef] [Green Version]
- Truong, H.-L.; Gangadharan, G.; Comerio, M.; Dustdar, S.; De Paoli, F. On analyzing and developing data contracts in cloud-based data marketplaces. In Proceedings of the 2011 IEEE Asia-Pacific Services Computing Conference, Jeju, Korea, 12–15 December 2011; pp. 174–181. [Google Scholar]
- Hatanaka, H.; Abe, A. What Type of Information and Scheme does the Data Market Need? Procedia Comput. Sci. 2015, 60, 1309–1317. [Google Scholar] [CrossRef] [Green Version]
- De Virgilio, R.; Orsi, G.; Tanca, L.; Torlone, R. Semantic data markets: A flexible environment for knowledge management. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, Glasgow, Scotland, UK, 24–28 October 2011; pp. 1559–1564. [Google Scholar]
- Morrison, N.; Hancock, D.; Hirschman, L.; Dawyndt, P.; Verslyppe, B.; Kyrpides, N.; Kottmann, R.; Yilmaz, P.; Glöckner, F.O.; Grethe, J.; et al. Data shopping in an open marketplace: Introducing the Ontogrator web application for marking up data using ontologies and browsing using facets. Stand. Genom. Sci. 2011, 4, 286–292. [Google Scholar] [CrossRef]
- Wijnhoven, F.; Van Den Belt, E.; Verbruggen, E.; Van Der Vet, P. Internal data market services: An ontology-based architecture and its evaluation. Inf. Sci. 2003, 6, 259–271. [Google Scholar]
- Chapman, A.; Simperl, E.; Koesten, L.; Konstantinidis, G.; Ibáñez, L.-D.; Kacprzak, E.; Groth, P. Dataset search: A survey. VLDB J. 2020, 29, 251–272. [Google Scholar] [CrossRef] [Green Version]
- Rekatsinas, T.; Dong, X.L.; Getoor, L.; Srivastava, D. Finding Quality in Quantity: The Challenge of Discovering Valuable Sources for Integration. In Proceedings of the 7th Biennial Conference on Innovative Data Systems Research (CIDR’15), Asilomar, CA, USA, 4–7 January 2015. [Google Scholar]
- Zhao, Y.; Yu, Y.; Li, Y.; Han, G.; Du, X. Machine learning based privacy-preserving fair data trading in big data market. Inf. Sci. 2019, 478, 449–460. [Google Scholar] [CrossRef]
- Niu, C.; Zheng, Z.; Wu, F.; Gao, X.; Chen, G. Achieving Data Truthfulness and Privacy Preservation in Data Markets. IEEE Trans. Knowl. Data Eng. 2019, 31, 105–119. [Google Scholar] [CrossRef]
- Niu, C.; Zheng, Z.; Wu, F.; Gao, X.; Chen, G. Trading Data in Good Faith: Integrating Truthfulness and Privacy Preservation in Data Markets. In Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, 19–22 April 2017; pp. 223–226. [Google Scholar]
- Perera, C.; Ranjan, R.; Wang, L. End-to-End Privacy for Open Big Data Markets. IEEE Cloud Comput. 2015, 2, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Kiayias, A.; Yener, B.; Yung, M. Privacy-Preserving Information Markets for Computing Statistical Data; Springer: Berlin/Heidelberg, Germany, 2009; pp. 32–50. [Google Scholar]
- Sørlie, J.-T.; Altmann, J. Sensing as a Service Revisited: A Property Rights Enforcement and Pricing Model for IIoT Data Marketplaces. In Proceedings of the International Conference on the Economics of Grids, Clouds, Systems, and Services, Leeds, UK, 17–19 September 2019; pp. 127–139. [Google Scholar]
- Shaabany, G.; Grimm, M.; Anderl, R. Secure Information Model for Data Marketplaces Enabling Global Distributed Manufacturing. Procedia CIRP 2016, 50, 360–365. [Google Scholar] [CrossRef] [Green Version]
- Schomm, F.; Stahl, F.; Vossen, G. Marketplaces for data: An initial survey. ACM SIGMOD Rec. 2013, 42, 15–26. [Google Scholar] [CrossRef]
- Stahl, F.; Schomm, F.; Vossen, G.; Vomfell, L. A classification framework for data marketplaces. Vietnam J. Comput. Sci. 2016, 3, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.I.S.; Lóscio, B.F. What is a data ecosystem? In Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age, Delft, The Netherlands, 30 May–1 June 2018; pp. 1–9. [Google Scholar]
- Oliveira, M.I.S.; Lima, G.D.F.B.; Lóscio, B.F. Investigations into Data Ecosystems: A systematic mapping study. Knowl. Inf. Syst. 2019, 61, 589–630. [Google Scholar] [CrossRef]
- Hayashi, T.; Ohsawa, Y. Understanding the Structural Characteristics of Data Platforms Using Metadata and a Network Approach. IEEE Access 2020, 8, 35469–35481. [Google Scholar] [CrossRef]
- Holt, T.J.; Lampke, E. Exploring stolen data markets online: Products and market forces. Crim. Justice Stud. 2010, 23, 33–50. [Google Scholar] [CrossRef]
- Smirnova, O.; Holt, T.J. Examining the Geographic Distribution of Victim Nations in Stolen Data Markets. Am. Behav. Sci. 2017, 61, 1403–1426. [Google Scholar] [CrossRef]
- Macdonald, M.; Frank, R. Shuffle Up and Deal: Use of a Capture–Recapture Method to Estimate the Size of Stolen Data Markets. Am. Behav. Sci. 2017, 61, 1313–1340. [Google Scholar] [CrossRef]
- Macdonald, M.; Frank, R. The network structure of malware development, deployment and distribution. Glob. Crime 2017, 18, 49–69. [Google Scholar] [CrossRef]
- Bevir, M. Governance: A Very Short Introduction; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Tupasela, A.; Snell, K.; Tarkkala, H. The Nordic data imaginary. Big Data Soc. 2020, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Zhao, Y. Dualism in data protection: Balancing the right to personal data and the data property right. Comput. Law Secur. Rev. 2019, 35, 1–11. [Google Scholar] [CrossRef]
- Odabaş, M.; Holt, T.J.; Breiger, R.L. Markets as Governance Environments for Organizations at the Edge of Illegality: Insights From Social Network Analysis. Am. Behav. Sci. 2017, 61, 1267–1288. [Google Scholar] [CrossRef]
- Holt, T.J. Exploring the social organisation and structure of stolen data markets. Glob. Crime 2013, 14, 155–174. [Google Scholar] [CrossRef]
- Yip, M.; Shadbolt, N.; Webber, C. Why forums? An empirical analysis into the facilitating factors of carding forums. In Proceedings of the 5th Annual ACM Web Science Conference, Paris, France, 2–4 May 2013; pp. 453–462. [Google Scholar]
- Hutchings, A.; Holt, T.J. The online stolen data market: Disruption and intervention approaches. Glob. Crime 2017, 18, 11–30. [Google Scholar] [CrossRef] [Green Version]
- Thimmesch, A.B. Transacting in Data: Tax, Privacy, and the New Economy. SSRN Electron. J. 2016, 94, 145–194. [Google Scholar] [CrossRef]
- Henshall, S. The COMsumer Manifesto: Empowering communities of consumers through the Internet. First Monday 2000, 5. [Google Scholar] [CrossRef]
- Agahari, W. Platformization of data sharing: Multi-party computation (MPC) as control mechanism and its effect on firms’ participation in data sharing via data marketplaces. In Proceedings of the 33rd Bled eConference: Enabling Technology for a Sustainable Society, Bled, Slovenia, 28 June 2020; pp. 691–704. [Google Scholar]
- Otto, B.; Jarke, M. Designing a multi-sided data platform: Findings from the International Data Spaces case. Electron. Mark. 2019, 29, 561–580. [Google Scholar] [CrossRef] [Green Version]
- Richter, H.; Slowinski, P.R. The Data Sharing Economy: On the Emergence of New Intermediaries. IIC Int. Rev. Intellect. Prop. Compet. Law 2019, 50, 4–29. [Google Scholar] [CrossRef] [Green Version]
- Spiekermann, S.; Novotny, A. A vision for global privacy bridges: Technical and legal measures for international data markets. Comput. Law Secur. Rev. 2015, 31, 181–200. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, E.; Shabani, M. DNA Data Marketplace: An Analysis of the Ethical Concerns Regarding the Participation of the Individuals. Front. Genet. 2019, 10, 1–6. [Google Scholar] [CrossRef]
- Van Dijck, J.; Poell, T. Understanding the promises and premises of online health platforms. Big Data Soc. 2016, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ishmaev, G. The Ethical Limits of Blockchain-Enabled Markets for Private IoT Data. Philos. Technol. 2020, 33, 411–432. [Google Scholar] [CrossRef] [Green Version]
- Charitsis, V.; Zwick, D.; Bradshaw, A. Creating Worlds that Create Audiences: Theorising Personal Data Markets in the Age of Communicative Capitalism. tripleC Commun. Capital. Crit. Open Access J. Glob. Sustain. Inf. Soc. 2018, 16, 820–834. [Google Scholar] [CrossRef]
- Elvy, S.-A. Paying for privacy and the personal data economy. Columbia Law Rev. 2017, 117, 1369–1460. [Google Scholar]
- Spiekermann, S.; Acquisti, A.; Böhme, R.; Hui, K.-L. The challenges of personal data markets and privacy. Electron. Mark. 2015, 25, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Guijarro, L.; Pla, V.; Vidal, J.R.; Naldi, M. Competition in data-based service provision: Nash equilibrium characterization. Future Gener. Comput. Syst. 2019, 96, 35–50. [Google Scholar] [CrossRef]
- Holt, T.J.; Smirnova, O.; Chua, Y.T. Exploring and Estimating the Revenues and Profits of Participants in Stolen Data Markets. Deviant Behav. 2016, 37, 353–367. [Google Scholar] [CrossRef]
- Shulman, A. The underground credentials market. Comput. Fraud Secur. 2010, 2010, 5–8. [Google Scholar] [CrossRef]
- Soley, A.M.; Siegel, J.E.; Suo, D.; Sarma, S.E. Value in vehicles: Economic assessment of automotive data. Digit. Policy Regul. Gov. 2018, 20, 513–527. [Google Scholar] [CrossRef]
- Tian, L.; Li, J.; Li, W.; Ramesh, B.; Cai, Z. Optimal Contract-Based Mechanisms for Online Data Trading Markets. IEEE Internet Things J. 2019, 6, 7800–7810. [Google Scholar] [CrossRef]
- Mao, W.; Zheng, Z.; Wu, F. Pricing for Revenue Maximization in IoT Data Markets: An Information Design Perspective. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 1837–1845. [Google Scholar]
- Shen, B.; Shen, Y.; Ji, W. Profit optimization in service-oriented data market: A Stackelberg game approach. Future Gener. Comput. Syst. 2019, 95, 17–25. [Google Scholar] [CrossRef]
- Niu, C.; Zheng, Z.; Wu, F.; Tang, S.; Gao, X.; Chen, G. Unlocking the value of privacy: Trading aggregate statistics over private correlated data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 2031–2040. [Google Scholar]
- Parra-Arnau, J. Optimized, direct sale of privacy in personal data marketplaces. Inf. Sci. 2018, 424, 354–384. [Google Scholar] [CrossRef] [Green Version]
- Yuncheng, S.; Bing, G.; Yan, S.; Xuliang, D.; Xiangqian, D.; Hong, Z. A pricing model for Big Personal Data. Tsinghua Sci. Technol. 2016, 21, 482–490. [Google Scholar] [CrossRef]
- Li, C.; Li, D.Y.; Miklau, G.; Suciu, D. A theory of pricing private data. ACM Trans. Database Syst. TODS 2014, 39, 1–28. [Google Scholar] [CrossRef]
- Li, C.; Li, D.Y.; Miklau, G.; Suciu, D. A theory of pricing private data. In Proceedings of the 16th International Conference on Database Theory, Genoa, Italy, 18–22 March 2013; pp. 33–44. [Google Scholar]
- Hayashi, T.; Ohsawa, Y. Preliminary Case Study on Value Determination of Datasets and Cross-disciplinary Data Collaboration Using Data Jackets. Procedia Comput. Sci. 2017, 112, 2175–2184. [Google Scholar] [CrossRef]
- Muschalle, A.; Stahl, F.; Löser, A.; Vossen, G. Pricing approaches for data markets. In Proceedings of the International Workshop on Business Intelligence for the Real-Time Enterprise, Istanbul, Turkey, 27 August 2012; pp. 129–144. [Google Scholar]
- Balazinska, M.; Howe, B.; Suciu, D. Data markets in the cloud: An opportunity for the database community. Proc. VLDB Endow. 2011, 4, 1482–1485. [Google Scholar] [CrossRef]
- Liang, F.; Yu, W.; An, D.; Yang, Q.; Fu, X.; Zhao, W. A Survey on Big Data Market: Pricing, Trading and Protection. IEEE Access 2018, 6, 15132–15154. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, P.; Feng, S.; Niyato, D. Profit Maximization Mechanism and Data Management for Data Analytics Services. IEEE Internet Things J. 2018, 5, 2001–2014. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, P.; Niyato, D.; Alsheikh, M.A.; Feng, S. Profit maximization auction and data management in big data markets. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar]
- Yassine, A.; Nazari Shirehjini, A.A.; Shirmohammadi, S. Smart Meters Big Data: Game Theoretic Model for Fair Data Sharing in Deregulated Smart Grids. IEEE Access 2015, 3, 2743–2754. [Google Scholar] [CrossRef]
- Jiang, C.; Gao, L.; Duan, L.; Huang, J. Economics of peer-to-peer mobile crowdsensing. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–6. [Google Scholar]
- Stahl, F.; Vossen, G. Data Quality Scores for Pricing on Data Marketplaces; Springer: Berlin/Heidelberg, Germany, 2016; pp. 215–224. [Google Scholar]
- Jang, B.; Park, S.; Lee, J.; Hahn, S.-G. Three Hierarchical Levels of Big-Data Market Model Over Multiple Data Sources for Internet of Things. IEEE Access 2018, 6, 31269–31280. [Google Scholar] [CrossRef]
- Henfridsson, O.; Bygstad, B. The generative mechanisms of digital infrastructure evolution. MIS Q. 2013, 37, 907–931. [Google Scholar] [CrossRef]
- Abbas, A.E. Designing Data Governance Mechanisms for Data Marketplace Meta-Platforms. In Proceedings of the 34th Bled eConference–Digital Support from Crisis to Progressive Change, Online, 27–30 June 2021; pp. 695–707. [Google Scholar]
- Mucha, T.; Seppala, T. Artificial Intelligence Platforms—A New Research Agenda for Digital Platform Economy. SSRN Electron. J. 2020. [Google Scholar] [CrossRef] [Green Version]
- De Reuver, M.; Sørensen, C.; Basole, R.C. The digital platform: A research agenda. J. Inf. Technol. 2018, 33, 124–135. [Google Scholar] [CrossRef] [Green Version]
- Van Angeren, J.; Alves, C.; Jansen, S. Can we ask you to collaborate? Analyzing app developer relationships in commercial platform ecosystems. J. Syst. Softw. 2016, 113, 430–445. [Google Scholar] [CrossRef]
- Gawer, A. Bridging differing perspectives on technological platforms: Toward an integrative framework. Res. Policy 2014, 43, 1239–1249. [Google Scholar] [CrossRef] [Green Version]
- Gebregiorgis, S.A.; Altmann, J. IT service platforms: Their value creation model and the impact of their level of openness on their adoption. Procedia Comput. Sci. 2015, 68, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Ondrus, J.; Gannamaneni, A.; Lyytinen, K. The impact of openness on the market potential of multi-sided platforms: A case study of mobile payment platforms. J. Inf. Technol. 2015, 30, 260–275. [Google Scholar] [CrossRef]
- Wareham, J.; Fox, P.B.; Cano Giner, J.L. Technology Ecosystem Governance. Organ. Sci. 2014, 25, 1195–1215. [Google Scholar] [CrossRef] [Green Version]
- Wessel, M.; Thies, F.; Benlian, A. Opening the floodgates: The implications of increasing platform openness in crowdfunding. J. Inf. Technol. 2017, 32, 344–360. [Google Scholar] [CrossRef]
- Gordijn, J.; Akkermans, J. Value-based requirements engineering: Exploring innovative e-commerce ideas. Requir. Eng. 2003, 8, 114–134. [Google Scholar]
- Porter, M.E. The value chain and competitive advantage. Underst. Bus. Process. 2001, 2, 50–66. [Google Scholar]
- De Reuver, M.; Bouwman, H.; Haaker, T. Business model roadmapping: A practical approach to come from an existing to a desired business model. Int. J. Innov. Manag. 2013, 17, 1–18. [Google Scholar] [CrossRef]
- Hevner, A.; Chatterjee, S. Design science research in information systems. In Design Research in Information Systems; Springer: Boston, MA, USA, 2010; pp. 9–22. [Google Scholar]
- Hevner, A.R. A three cycle view of design science research. Scand. J. Inf. Syst. 2007, 19, 1–6. [Google Scholar]
- Sekaran, U.; Bougie, R. Research Methods for Business: A Skill Building Approach; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
STOF Model Domain | Description | Category Examples (Included but Not Limited To) |
---|---|---|
Service | Discussing possible services for end-users (data providers and buyers); services uniqueness and differentiators compared to competitors’ offered services; potential customers who will use and pay for the developed services. | Customer, previous experience, expected value, market segment, context, effort (ease of use), tariff, bundling, perceived value, delivered value, intended value, value proposition. |
Technology | Discussing technology needs to deliver the services. | Technical architecture, applications, devices, service platforms, billing platform, customer data platform, technical functionality. |
Organizational | Discussing actors and resources to run the services. Use organization domain to categorize “other” topics, e.g., demographic aspects, social implications. | Resources and capabilities, strategies and goals, value activities, value network, actors, organizational arrangements, relations, interactions, roles. |
Finance | Discussing financial schemas to run the services. | Investment sources, capital cost sources, costs, revenue sources, revenues, risk sources, risk performance indicators, financial arrangement. |
Category | Description | Article Reference |
---|---|---|
Data-related aspects | Discussing data properties as a unit of analysis. | [15,16] |
User preferences | Discussing willingness to share data due to certain aspects. | [17,18,19] |
Value proposition | Identifying value for data marketplace actors. | [20,21,22,23,24,25,26] |
Topic | Description | Article Reference |
---|---|---|
Economic feasibility | Examining the possibility to implement data marketplaces using economic perspectives. | [124] |
Market analysis | Examining the market size and value of data marketplaces. | [125,126,127] |
Pricing mechanisms | Discussing mathematical or economic approaches in evaluating, valuating, or pricing datasets (or data services) in data marketplaces. | [47,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, A.E.; Agahari, W.; van de Ven, M.; Zuiderwijk, A.; de Reuver, M. Business Data Sharing through Data Marketplaces: A Systematic Literature Review. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 3321-3339. https://doi.org/10.3390/jtaer16070180
Abbas AE, Agahari W, van de Ven M, Zuiderwijk A, de Reuver M. Business Data Sharing through Data Marketplaces: A Systematic Literature Review. Journal of Theoretical and Applied Electronic Commerce Research. 2021; 16(7):3321-3339. https://doi.org/10.3390/jtaer16070180
Chicago/Turabian StyleAbbas, Antragama Ewa, Wirawan Agahari, Montijn van de Ven, Anneke Zuiderwijk, and Mark de Reuver. 2021. "Business Data Sharing through Data Marketplaces: A Systematic Literature Review" Journal of Theoretical and Applied Electronic Commerce Research 16, no. 7: 3321-3339. https://doi.org/10.3390/jtaer16070180
APA StyleAbbas, A. E., Agahari, W., van de Ven, M., Zuiderwijk, A., & de Reuver, M. (2021). Business Data Sharing through Data Marketplaces: A Systematic Literature Review. Journal of Theoretical and Applied Electronic Commerce Research, 16(7), 3321-3339. https://doi.org/10.3390/jtaer16070180