Enhancing Consumer Experience through Development of Implicit Attitudes Using Food Delivery Applications
Abstract
:1. Introduction
2. Theoretical Framework and Hypothesis Development
3. Research Methodology
3.1. Sampling and Data Collection
3.2. Measures
4. Results
5. Discussion over the Main Results
6. Conclusions
6.1. Theoretical Implications
6.2. Managerial and Policy Implications in the Field
6.3. Research Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Hypothesis Related to the Theoretical Model Proposed
Construct /Item from the model | Hypothesis | Adapted from: |
Expected effort—EE | Expected effort positively influences perceived utility | Davis, F.D. (1989) Venkatesh, V., and Davis, F. D. (2000) Tang, A.K.Y. (2016) Onete, C.B et al., (2020) Baker J. (2021) Ghalandari, K. (2021) |
Facilitating conditions—FC | Facilitating conditions positively influence perceived utility | Ajzen, I. (1991) Ajzen, I. (2015) Ratten, V. (2015) Bellini, F.,and Dulskaia, I. (2017) Tam, C., Santos, D., and Oliveira, T. (2020) Human, G., Ungerer, M., and Azémia, J.A.J. (2020) |
Social influence—SI | Social norms referring to social influence positively influence perceived utility | Ajzen, I., and Fishbein, M. (1977) Venkatesh, V., andDavis, F.D. (2000) Taherdoost, H. (2018) Dwivedi, Y.K. et al. (2019) Sun, Y., and Zhang, Y. (2020) Tamilmani, K. et al. (2021) |
Hedonic motivation—HM | Hedonic motivation also positively influences perceived utility | Venkatesh, V., Thong, J.Y., and Xu, X. (2012) Ukpabi, D.C., and Karjaluoto, H. (2017) Alalwan, A.A. (2020) Alam, M.Z. et al. (2020) Naeem, M. (2020) Öztürk, R. (2020) Pollard, M., and O’Neill, C.T. (2020) Ahn, J. (2021) |
Expected performance—EP | Expected performance positively influences perceived utility. | Chan, F.K.Y. et al. (2010) Venkatesh, V., Thong, J.Y., and Xu, X. (2012) Arenas-Gaitani, J., Peral-Peral, B., and Ramon-Jeronimo, M.A. (2015) Minazzi, R., and Mauri, A.G. (2015) Kim, S.C., Yoon, D., and Han, E.K. (2016) Nam, L.G., An, T., and Thi, N. (2021) |
Perceived Utility—PU | Perceived utility positively influences mobile application use habit. | Oulasvirta, A. et al. (2012) Kwateng, K.O.; Atiemo, K.A.O. (2019) |
Positive attitude—PA | Perceived utility or usefulness of the application positively influences the positive attitude seen as a dimension related with implicit attitude. | Ajzen, I. (2001) Haidt, J. (2001) Dabija, D.C., Pop, A.N., and Săniuță, A. (2017) Serenko, A., and Turel, O. (2019) |
Mobile app use habit—MH | Positive attitude influences mobile application use habit. | Limayem, M., Hirt, S.G., and Cheung, C.M. (2007) Alalwan, A.A. (2018) |
Usage intention—UI | Application use habit positively influences usage intention. | Wood, W. (2017) Gardner B., and Lally P. (2018) Bölen, M.C. (2020) Kruglanski, A.W., and Szumowska, E. (2020) |
Usage behavior—UB | Usage intention positively influences usage behavior. | Venkatesh, V. et al. (2003) Im, I., Hong, S., and Kang, M.S. (2011)Yu, C.S. (2012) Abroud, A. et al. (2015) |
Consumption experience—CE | Usage behavior positively influences consumption experience from the point of view of perception of ordered food product quality. | Jacoby, J. (2002) Vasiliu, C. et al. (2016) Konuk, F.A. (2019) Dabija, D.C.; Bejan, B.M., and Pușcaș, C. A. (2020) |
Usage behavior positively influences consumption experience from the point of view of speed of delivery perception. | Collier, J.E., and Bienstock, C.C. (2006) Lewis, M., Singh, V., and Fay, S. (2006) Xing, Y. et al. (2010) Rao, S. et al. (2011) Chen, M.C. et al. (2014) Koufteros, X. et al. (2014) Blut, M. (2016) Wilson-Jeanselme, M., and Reynolds, J. (2016) Xu, X., Munson, C.L., and Zeng, S. (2017) Gawor, T., and Hoberg, K. (2019) Nguyen, D.H. et al. (2019) | |
Usage behavior positively influences consumption experience from the point of view of delivery standardization perception. | Ding, Y., and Keh, H.T. (2016) Wang, Z. et al. (2016) | |
Usage behavior positively influences consumption experience from the point of view of comfort. | Dubé, L. et al. (2005) | |
Usage behavior positively influences consumption experience through interaction with customer service/home delivery staff. | Quan, S., and Wang, N. (2004) Nambisan, S., and Baron, R.A. (2007) | |
Usage behavior positively influences consumption experience through positive emotion/gratification. | Straker, K., and Wrigley, C. (2016) De Cicco, R., Silva, S.C., and Alparone, F.R. (2020) Cha, S.S., and Shin, M.H. (2021) |
References
- Amin, A.; Arefin, S.; Alam, R.; Ahammad, T.; Hoque, R. Using Mobile Food Delivery Applications during COVID-19 Pandemic: An Extended Model of Planned Behavior. J. Food Prod. Mark. 2021, 27, 1–22. [Google Scholar] [CrossRef]
- Cavallo, C.; Sacchi, G.; Carfora, V. Resilience effects in food consumption behaviour at the time of Covid-19: Perspectives from Italy. Heliyon 2020, 6, e05676. [Google Scholar] [CrossRef] [PubMed]
- Del Chiappa, G. COVID-19 Pandemic and the Accommodation Sector in Sardinia, Italy: Impacts and Response Actions. In Tourism Destination Management in a Post-Pandemic Context; Emerald Publishing Limited: Bingley, UK, 2021; pp. 49–65. [Google Scholar]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. Manag. Inf. Syst. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Davis, F.D. A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.; Suresh, S.; Sharma, S. Factors influencing consumers’ attitude towards adoption and continuous use of mobile applications: A conceptual model. Procedia Comput. Sci. 2017, 122, 106–113. [Google Scholar] [CrossRef]
- Pollard, M.; O’Neill, C.T. How COVID-19 Is Impacting Online Food Delivery Platforms. Citi Global Perspectives & Solutions. 2020. Available online: https://www.citivelocity.com/citigps/how-covid-19-is-impacting-online-food-delivery-platforms/ (accessed on 1 March 2021).
- Ahn, J. Impact of cognitive aspects of food mobile application on customers’ behaviour. Curr. Issues Tour. 2021, 1–8. [Google Scholar] [CrossRef]
- Dsouza, D.; Sharma, D. Online food delivery portals during COVID-19 times: An analysis of changing consumer behavior and expectations. Int. J. Innov. Sci. 2021, 13, 218–232. [Google Scholar] [CrossRef]
- Di Crosta, A.; Ceccato, I.; Marchetti, D.; La Malva, P.; Maiella, R.; Cannito, L.; Cipi, M.; Mammarella, N.; Palumbo, R.; Verrocchio, M.C.; et al. Psychological factors and consumer behavior during the COVID-19 pandemic. PLoS ONE 2021, 16, e0256095. [Google Scholar] [CrossRef] [PubMed]
- Bentall, R.P.; Lloyd, A.; Bennett, K.; McKay, R.; Mason, L.; Murphy, J.; McBride, O.; Hartman, T.K.; Gibson-Miller, J.; Levita, L.; et al. Pandemic buying: Testing a psychological model of over-purchasing and panic buying using data from the United Kingdom and the Republic of Ireland during the early phase of the COVID-19 pandemic. PLoS ONE 2021, 16, e0246339. [Google Scholar] [CrossRef]
- Zwanka, R.J.; Buff, C. COVID-19 Generation: A Conceptual Framework of the Consumer Behavioral Shifts to Be Caused by the COVID-19 Pandemic. J. Int. Consum. Mark. 2021, 33, 58–67. [Google Scholar] [CrossRef]
- Durante, K.M.; Laran, J. The Effect of Stress on Consumer Saving and Spending. J. Mark. Res. 2016, 53, 814–828. [Google Scholar] [CrossRef]
- Jeżewska-Zychowicz, M.; Plichta, M.; Królak, M. Consumers’ Fears Regarding Food Availability and Purchasing Behaviors during the COVID-19 Pandemic: The Importance of Trust and Perceived Stress. Nutrients 2020, 12, 2852. [Google Scholar] [CrossRef]
- Ceccato, I.; Palumbo, R.; Di Crosta, A.; Marchetti, D.; La Malva, P.; Maiella, R.; Marin, A.; Mammarella, N.; Verrocchio, M.C.; Di Domenico, A. “What’s next?” Individual differences in expected repercussions of the COVID-19 pandemic. Pers. Individ. Differ. 2021, 174, 110674. [Google Scholar] [CrossRef]
- Loxton, M.; Truskett, R.; Scarf, B.; Sindone, L.; Baldry, G.; Zhao, Y. Consumer Behaviour during Crises: Preliminary Research on How Coronavirus Has Manifested Consumer Panic Buying, Herd Mentality, Changing Discretionary Spending and the Role of the Media in Influencing Behaviour. J. Risk Financ. Manag. 2020, 13, 166. [Google Scholar] [CrossRef]
- Telukdarie, A.; Munsamy, M.; Mohlala, P. Analysis of the Impact of COVID-19 on the Food and Beverages Manufacturing Sector. Sustainability 2020, 12, 9331. [Google Scholar] [CrossRef]
- Vittuari, M.; Bazzocchi, G.; Blasioli, S.; Cirone, F.; Maggio, A.; Orsini, F.; Penca, J.; Petruzzelli, M.; Specht, K.; Amghar, S.; et al. Envisioning the Future of European Food Systems: Approaches and Research Priorities After COVID-19. Front. Sustain. Food Syst. 2021, 5, 642787. [Google Scholar] [CrossRef]
- Ajzen, I.; Fishbein, M. Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychol. Bull. 1977, 84, 888–918. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Ammenwerth, E. Technology acceptance models in health informatics: TAM and UTAUT. In Applied Interdisciplinary Theory in Health Informatics. A Knowledge Base for Practitioners; Scott, P., de Keizert, N., Georgiou, A., Eds.; IOS Press: Amsterdam, The Netherlands, 2019; Volume 263, pp. 64–71. [Google Scholar]
- Sönmez, F. Technology Acceptance of Business Intelligence and Customer Relationship Management Systems within Institutions Operating in Capital Markets. Int. J. Acad. Res. Bus. Soc. Sci. 2018, 8, 400–422. [Google Scholar] [CrossRef]
- Alwabel, A.S.A.; Zeng, X.J. Data-Driven Modeling of Technology Acceptance: A Machine Learning Perspective. Expert Syst. Appl. 2021, 185, 115584. [Google Scholar] [CrossRef]
- Chimborazo-Azogue, L.E.; Frasquet, M.; Molla-Descals, A.; Miquel-Romero, M.J. Understanding Mobile Showrooming Based on a Technology Acceptance and Use Model. Sustainability 2021, 13, 7288. [Google Scholar] [CrossRef]
- Goodhue, D.L.; Thompson, R.L. Task-Technology Fit and Individual Performance. MIS Q. 1995, 19, 213–236. [Google Scholar] [CrossRef]
- Nikou, S.A.; Economides, A.A. Mobile-Based Assessment: Integrating acceptance and motivational factors into a combined model of Self-Determination Theory and Technology Acceptance. Comput. Hum. Behav. 2017, 68, 83–95. [Google Scholar] [CrossRef]
- Ratten, V. International Consumer Attitudes Toward Cloud Computing: A Social Cognitive Theory and Technology Acceptance Model Perspective. Thunderbird Int. Bus. Rev. 2015, 57, 217–228. [Google Scholar] [CrossRef]
- Baker, J. The Technology–Organization–Environment Framework. In Information Systems Theory; Dwivedi, Y., Wade, M., Schneberger, S., Eds.; Springer: New York, NY, USA, 2012; Volume 28, pp. 231–245. [Google Scholar]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, Y.K.; Rana, N.P.; Jeyaraj, A.; Clement, M.; Williams, M.D. Re-examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a Revised Theoretical Model. Inf. Syst. Front. 2019, 21, 719–734. [Google Scholar] [CrossRef] [Green Version]
- Palau-Saumell, R.; Forgas-Coll, S.; Sánchez-García, J.; Robres, E. User Acceptance of Mobile Apps for Restaurants: An Expanded and Extended UTAUT-2. Sustainability 2019, 11, 1210. [Google Scholar] [CrossRef] [Green Version]
- Ghalandari, K. The Effect of Performance Expectancy, Effort Expectancy, Social Influence and Facilitating Conditions on Acceptance of E-Banking Services in Iran: The moderating role of Age and Gender. Middle-East J. Sci. Res. 2012, 12, 801–807. [Google Scholar]
- Onete, C.B.; Chița, S.D.; Vargas, V.M.; Budz, S. Decision-Making Process Regarding the Use of Mobile Phones in Romania Taking into Consideration Sustainability and Circular Economy. Information 2020, 11, 473. [Google Scholar] [CrossRef]
- Tang, A.K.Y. Mobile App Monetization: App Business Models in the Digital Era. Int. J. Innov. Manag. Technol. 2016, 7, 224–227. [Google Scholar] [CrossRef]
- Tam, C.; Santos, D.; Oliveira, T. Exploring the influential factors of continuance intention to use mobile Apps: Extending the expectation confirmation model. Inf. Syst. Front. 2020, 22, 243–257. [Google Scholar] [CrossRef]
- Human, G.; Ungerer, M.; Azémia, J.A.J. Mauritian consumer intentions to adopt online grocery shopping: An extended decomposition of UTAUT2 with moderation. Manag. Dyn. 2020, 29, 15–37. [Google Scholar] [CrossRef]
- Ajzen, I. Consumer attitudes and behavior: The theory of planned behavior applied to food consumption decisions. Ital. Rev. Agric. Econ. 2015, 70, 121–138. [Google Scholar] [CrossRef]
- Bellini, F.; Dulskaia, I. A digital platform as a facilitator for assessing innovation potential and creating business models: A case study from the i3 project. In Proceedings of the International Conference on Business Excellence, Bucharest, Romania, 30–31 March 2017; Walter de Gruyter GmbH: Berlin, Germany, 2017; Volume 11, pp. 982–993. [Google Scholar]
- Tamilmani, K.; Rana, N.P.; Wamba, S.F.; Dwivedi, R. The extended Unified Theory of Acceptance and Use of Technology (UTAUT2): A systematic literature review and theory evaluation. Int. J. Inf. Manag. 2021, 57, 102269. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y. A review of theories and models applied in studies of social media addiction and implications for future research. Addict. Behav. 2021, 114, 106699. [Google Scholar] [CrossRef]
- Taherdoost, H. A review of technology acceptance and adoption models and theories. Procedia Manuf. 2018, 22, 960–967. [Google Scholar] [CrossRef]
- Ukpabi, D.C.; Karjaluoto, H. Consumers’ acceptance of information and communications technology in tourism: A review. Telemat. Inform. 2017, 34, 618–644. [Google Scholar] [CrossRef] [Green Version]
- Alalwan, A.A. Mobile food ordering apps: An empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. Int. J. Inf. Manag. 2020, 50, 28–44. [Google Scholar] [CrossRef]
- Alam, M.Z.; Hoque, R.; Hu, W.; Barua, Z. Factors influencing the adoption of mHealth services in a developing country: A patient-centric study. Int. J. Inf. Manag. 2020, 50, 128–143. [Google Scholar] [CrossRef]
- Naeem, M. Understanding the customer psychology of impulse buying during COVID-19 pandemic: Implications for retailers. Int. J. Retail. Distrib. Manag. 2020, 49, 377–393. [Google Scholar] [CrossRef]
- Öztürk, R. COVID-19 Pandemi Döneminde Pazarlama Literatüründeki Eğilimler: Bibliyometrik Analizle Bir İnceleme. OPUS Uluslararası Toplum Araştırmaları Dergisi 2020, 16, 3251–3273. [Google Scholar] [CrossRef]
- Kim, S.C.; Yoon, D.; Han, E.K. Antecedents of Mobile App Usage Among Smartphone Users. J. Mark. Commun. 2016, 22, 653–670. [Google Scholar] [CrossRef]
- Minazzi, R.; Mauri, A.G. Mobile Technologies Effects on Travel Behaviours and Experiences: A Preliminary Analysis. In Information and Communication Technologies in Tourism 2015. Proceedings of the International Conference in Lugano, Switzerland, February 3–6, 2015; Tussyadiah, I., Inversini, A., Eds.; Springer: Cham, Switzerland, 2015; pp. 507–521. [Google Scholar]
- Arenas-Gaitani, J.; Peral-Peral, B.; Ramon-Jeronimo, M.A. Elderly and Internet Banking: An Application of UTAUT2. J. Internet Bank. Commer. 2015, 20, 1–24. [Google Scholar]
- Chan, F.; Thong, J.; Venkatesh, V.; Brown, S.; Hu, P.; Tam, K.Y. Modeling Citizen Satisfaction with Mandatory Adoption of an E-Government Technology. J. Assoc. Inf. Syst. 2010, 11, 519–549. [Google Scholar] [CrossRef]
- Nam, L.G.; An, T.; Thi, N. Factors Affecting the Continuance Intention to Use Food Delivery Apps of The Millennials in Ho Chi Minh City. Technium Soc. Sci. J. 2021, 18, 404–417. [Google Scholar] [CrossRef]
- Kwateng, K.O.; Atiemo, K.A.O.; Appiah, C. Acceptance and use of mobile banking: An application of UTAUT2. J. Enterp. Inf. Manag. 2019, 32, 118–151. [Google Scholar] [CrossRef]
- Oulasvirta, A.; Rattenbury, T.; Ma, L.; Raita, E. Habits make smartphone use more pervasive. Pers. Ubiquit. Comput. 2012, 16, 105–114. [Google Scholar] [CrossRef]
- Ajzen, I. Nature and Operation of Attitudes. Annu. Rev. Psychol. 2001, 52, 27–58. [Google Scholar] [CrossRef] [Green Version]
- Dabija, D.C.; Pop, N.A.; Săniuță, A. Innovation in Do-It-Yourself Retail: An Empirical Study on Generation X among Professional Craftsmen and Consumers. Econ. Sociol. 2017, 10, 296–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haidt, J. The emotional dog and its rational tail: A social intuitionist approach to moral judgment. Psychol. Rev. 2001, 108, 814–834. [Google Scholar] [CrossRef] [PubMed]
- Serenko, A.; Turel, O. A dual-attitude model of system use: The effect of explicit and implicit attitudes. Inf. Manag. 2019, 56, 657–668. [Google Scholar] [CrossRef]
- Alalwan, A.A. Investigating the impact of social media advertising features on customer purchase intention. Int. J. Inf. Manag. 2018, 42, 65–77. [Google Scholar] [CrossRef]
- Limayem, M.; Hirt, S.G.; Cheung, C.M. How Habit Limits the Predictive Power of Intention: The Case of Information Systems Continuance. MIS Q. 2007, 31, 705–737. [Google Scholar] [CrossRef] [Green Version]
- Bölen, M.C. Exploring the determinants of users’ continuance intention in smartwatches. Technol. Soc. 2020, 60, 101209. [Google Scholar] [CrossRef]
- Wood, W. Habit in Personality and Social Psychology. Pers. Soc. Psychol. Rev. 2017, 21, 389–403. [Google Scholar] [CrossRef] [PubMed]
- Kruglanski, A.W.; Szumowska, E. Habitual Behavior Is Goal-Driven. Perspect. Psychol. Sci. 2020, 15, 1256–1271. [Google Scholar] [CrossRef]
- Gardner, B.; Lally, P. Modelling Habit Formation and Its Determinants. In The Psychology of Habit; Verplanken, B., Ed.; Springer: Cham, Switzerland, 2018; pp. 207–229. [Google Scholar]
- Abroud, A.; Choong, Y.V.; Muthaiyah, S.; Fie, D.Y.G. Adopting e-finance: Decomposing the technology acceptance model for investors. Serv. Bus. 2015, 9, 161–182. [Google Scholar] [CrossRef]
- Yu, C.S. Factors Affecting Individuals to Adopt Mobile Banking: Empirical Evidence from the UTAUT Model. J. Electron. Commer. Res. 2012, 13, 104–121. [Google Scholar]
- Im, I.; Hong, S.; Kang, M.S. An international comparison of technology adoption: Testing the UTAUT model. Inf. Manag. 2011, 48, 1–8. [Google Scholar] [CrossRef]
- Chaney, D.; Lunardo, R.; Mencarelli, R. Consumption experience: Past, present and future. Qual. Mark. Res. Int. J. 2018, 21, 402–420. [Google Scholar] [CrossRef]
- Nagy, I.D.; Dabija, D.C. The Transition from Natural/Traditional Goods to Organic Products in an Emerging Market. Information 2020, 11, 227. [Google Scholar] [CrossRef] [Green Version]
- Dumitru, I.; Burghiu, A.G. Romanian food waste analysis. In New Trends in Sustainable Business and Consumption; Dinu, V., Ed.; Editura ASE: Bucharest, Romania, 2019; pp. 441–447. [Google Scholar]
- Holbrook, M.B.; Hirschman, E.C. The Experiential Aspects of Consumption: Consumer Fantasies, Feelings, and Fun. J. Consum. Res. 1982, 9, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.B.; Pham, M.T.; Andrade, E.B. The nature and role of affect in consumer behavior. In Handbook of Consumer Psychology; Haugtvedt, C.P., Herr, P.M., Kardes, F.R., Eds.; Taylor & Francis Group: New York, NY, USA; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2008; pp. 297–348. [Google Scholar]
- Holbrook, M.B. Aims, Concepts, and Methods for the Representation of Individual Differences in Esthetic Responses to Design Features. J. Consum. Res. 1986, 13, 337–347. [Google Scholar] [CrossRef]
- Kwortnik, R.J.; Ross, W.T. The role of positive emotions in experiential decisions. Int. J. Res. Mark. 2007, 24, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Vasiliu, C.; Felea, M.; Albăstroiu, I.; Dobrea, M. Exploring multi-channel shopping behavior towards IT & C products, based on business students opinions. Amfiteatru Econ. 2016, 18, 184–198. [Google Scholar]
- Dabija, D.C.; Bejan, B.M.; Pușcaș, C. A Qualitative Approach to the Sustainable Orientation of Generation Z in Retail: The Case of Romania. J. Risk Financ. Manag. 2020, 13, 152. [Google Scholar] [CrossRef]
- Jacoby, J. Stimulus-Organism-Response Reconsidered: An Evolutionary Step in Modeling (Consumer) Behavior. J. Consum. Psychol. 2002, 12, 51–57. [Google Scholar] [CrossRef]
- Konuk, F.A. The influence of perceived food quality, price fairness, perceived value and satisfaction on customers’ revisit and word-of-mouth intentions towards organic food restaurants. J. Retail. Consum. Serv. 2019, 50, 103–110. [Google Scholar] [CrossRef]
- Nguyen, D.H.; De Leeuw, S.; Dullaert, W.; Foubert, B.P.J. What Is the Right Delivery Option for You? Consumer Preferences for Delivery Attributes in Online Retailing. J. Bus. Logist. 2019, 40, 299–321. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.; Singh, V.; Fay, S. An Empirical Study of the Impact of Nonlinear Shipping and Handling Fees on Purchase Incidence and Expenditure Decisions. Mark. Sci. 2006, 25, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.; Goldsby, T.J.; Griffis, S.E.; Iyengar, D. Electronic Logistics Service Quality (e-LSQ): Its Impact on the Customer’s Purchase Satisfaction and Retention. J. Bus. Logist. 2011, 32, 167–179. [Google Scholar] [CrossRef]
- Collier, J.; Bienstock, C. Measuring Service Quality in E-Retailing. J. Serv. Res. 2006, 8, 260–275. [Google Scholar] [CrossRef]
- Xing, Y.; Grant, D.B.; McKinnon, A.; Fernie, J. Physical distribution service quality in online retailing. Int. J. Phys. Distrib. Logist. Manag. 2010, 40, 415–432. [Google Scholar] [CrossRef]
- Koufteros, X.; Droge, C.; Heim, G.R.; Massad, N.; Vickery, S.K. Encounter Satisfaction in E-tailing: Are the Relationships of Order Fulfillment Service Quality with its Antecedents and Consequences Moderated by Historical Satisfaction? Decis. Sci. 2014, 45, 5–48. [Google Scholar] [CrossRef]
- Blut, M. E-Service Quality: Development of a Hierarchical Model. J. Retail. 2016, 92, 500–517. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Munson, C.L.; Zeng, S. The impact of e-service offerings on the demand of online customers. Int. J. Prod. Econ. 2017, 184, 231–244. [Google Scholar] [CrossRef]
- Wilson-Jeanselme, M.; Reynolds, J. Understanding shoppers’ expectations of online grocery retailing. Int. J. Retail. Distrib. Manag. 2006, 34, 529–540. [Google Scholar] [CrossRef]
- Gawor, T.; Hoberg, K. Customers’ valuation of time and convenience in e-fulfillment. Int. J. Phys. Distrib. Logist. Manag. 2019, 49, 75–98. [Google Scholar] [CrossRef]
- Chen, M.C.; Hsu, C.L.; Hsu, C.M.; Lee, Y.Y. Ensuring the quality of e-shopping specialty foods through efficient logistics service. Trends Food Sci. Technol. 2014, 35, 69–82. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, M.; Sun, H.; Zhu, G. Effects of standardization and innovation on mass customization: An empirical investigation. Technovation 2016, 48/49, 79–86. [Google Scholar] [CrossRef]
- Ding, Y.; Keh, H.T. A re-examination of service standardization versus customization from the consumer’s perspective. J. Serv. Mark. 2016, 30, 16–28. [Google Scholar] [CrossRef]
- Jiang, P.; Rosenbloom, B. Customer intention to return online: Price perception, attribute-level performance, and satisfaction unfolding over time. Eur. J. Mark. 2005, 39, 150–174. [Google Scholar] [CrossRef] [Green Version]
- Dubé, L.; Lebel, J.; Lü, J. Affect asymmetry and comfort food consumption. Physiol. Behav. 2005, 86, 559–567. [Google Scholar] [CrossRef]
- Nambisan, S.; Baron, R.A. Interactions in virtual customer environments: Implications for product support and customer relationship management. J. Interact. Mark. 2007, 21, 42–62. [Google Scholar] [CrossRef]
- Quan, S.; Wang, N. Towards a structural model of the tourist experience: An illustration from food experiences in tourism. Tour. Manag. 2004, 25, 297–305. [Google Scholar] [CrossRef]
- Straker, K.; Wrigley, C. Designing an emotional strategy: Strengthening digital channel engagements. Bus. Horiz. 2016, 59, 339–346. [Google Scholar] [CrossRef]
- De Cicco, R.; e Silva, S.C.; Alparone, F.R. Millennials’ attitude toward chatbots: An experimental study in a social relationship perspective. Int. J. Retail. Distrib. Manag. 2020, 48, 1213–1233. [Google Scholar] [CrossRef]
- Cha, S.S.; Shin, M.H. The Effect of Delivery Food on Customer Emotional Response and Repurchase Intention. Korean J. Food Health Converg. 2021, 7, 1–10. [Google Scholar] [CrossRef]
- Suhartanto, D.; Dean, D.; Leo, G.; Triyuni, N.N. Millennial Experience with Online Food Home Delivery: A Lesson from Indonesia. Interdiscip. J. Inf. Knowl. Manag. 2019, 14, 277–294. [Google Scholar] [CrossRef]
- Prasetyo, Y.T.; Tanto, H.; Mariyanto, M.; Hanjaya, C.; Young, M.N.; Persada, S.F.; Miraja, B.A.; Redi, A.A.N.P. Factors Affecting Customer Satisfaction and Loyalty in Online Food Delivery Service during the COVID-19 Pandemic: Its Relation with Open Innovation. J. Open Innov. Technol. Mark. Complex. 2021, 7, 76. [Google Scholar] [CrossRef]
- Li, C.; Mirosa, M.; Bremer, P. Review of Online Food Delivery Platforms and their Impacts on Sustainability. Sustainability. 2020, 12, 5528. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, J.; Wu, S.; Li, N.; Wang, Y.; Liu, J.; Xu, X.; He, Z.; Cheng, Y.; Zeng, X.; et al. Association between Take-Out Food Consumption and Obesity among Chinese University Students: A Cross-Sectional Study. Int. J. Environ. Res. Public Heal. 2019, 16, 1071. [Google Scholar] [CrossRef] [Green Version]
- Wang, O. Consumer Adoption of Online-to-Offline Food Delivery Services: A Conceptual Model. In Strategic Innovative Marketing and Tourism; Advances in Digital Marketing and eCommerce. Springer Proceedings in Business and Economics; Martínez-López, F., D’Alessandro, S., Eds.; Springer: Cham, Switzerland, 2020; pp. 99–105. [Google Scholar]
- Wang, O.; Somogyi, S.; Charlebois, S. Food choice in the e-commerce era: A comparison between Business-To-Consumer (B2C), Online-To-Offline (O2O) and New Retail. Br. Food J. 2020, 122, 1215–1237. [Google Scholar] [CrossRef]
- Roh, M.; Park, K. Adoption of O2O food delivery services in South Korea: The moderating role of moral obligation in meal preparation. Int. J. Inf. Manag. 2019, 47, 262–273. [Google Scholar] [CrossRef]
- Liu, C.; Chen, J. Consuming takeaway food: Convenience, waste and Chinese young people’s urban lifestyle. J. Consum. Cult. 2019. [Google Scholar] [CrossRef]
- Clements, J.M. Knowledge and Behaviors Toward COVID-19 Among US Residents During the Early Days of the Pandemic: Cross-Sectional Online Questionnaire. JMIR Public Health Surveill. 2020, 6, e19161. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.S.; Raeside, R.; Redfern, J.; Gibson, A.A.; Singleton, A.; Partridge, S.R. #SupportLocal: How online food delivery services leveraged the COVID-19 pandemic to promote food and beverages on Instagram. Public Health Nutr. 2021, 24, 4812–4822. [Google Scholar] [CrossRef]
- Gunden, N.; Morosan, C.; DeFranco, A. Consumers’ intentions to use online food delivery systems in the USA. Int. J. Contemp. Hosp. Manag. 2020, 32, 1325–1345. [Google Scholar] [CrossRef]
- Alkire (Nasr), L.; O’Connor, G.; Myrden, S.; Köcher, S. Patient experience in the digital age: An investigation into the effect of generational cohorts. J. Retail. Consum. Serv. 2020, 57, 102221. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Park, E. User acceptance of smart wearable devices: An expectation-confirmation model approach. Telemat. Inform. 2020, 47, 101318. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; Sage Publications: Thousand Oaks, CA, USA, 2021. [Google Scholar]
- Kline, R. Principles and Practice of Structural Equation Modeling, 4th ed.; The Guilford Press: New York, NY, USA, 2016. [Google Scholar]
- Hair, J.F., Jr.; Sarstedt, M.; Ringle, C.M.; Gudergan, S.P. Advanced Issues in Partial Least Squares Structural Equation Modeling; Sage Publications: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Purwanto, A. Partial Least Squares Structural Squation Modeling (PLS-SEM) Analysis for Social and Management Research: A Literature Review. Int. J. Ind. Eng. Manag. Res. 2021, 2, 114–123. [Google Scholar] [CrossRef]
- Huzsvai, L.; Fejér, P.; Illés, Á.; Bojtor, C.; Bojté, C.; Horváth, É.; Demeter, C. Analysis of sweet corn nutritional values using multivariate statistical methods. Acta Agrar. Debreceniensis 2021, 1, 103–108. [Google Scholar] [CrossRef]
- Goni, M.D.; Naing, N.N.; Hasan, H.; Wan-Arfah, N.; Deris, Z.Z.; Arifin, W.N.; Hussin, T.M.A.R.; Abdulrahman, A.S.; Baaba, A.A.; Arshad, M.R. Development and validation of knowledge, attitude and practice questionnaire for prevention of respiratory tract infections among Malaysian Hajj pilgrims. BMC Public Health 2020, 20, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, N. Factor Analysis as a Tool for Survey Analysis. Am. J. Appl. Math. Stat. 2021, 9, 4–11. [Google Scholar] [CrossRef]
- Hooper, D.; Coughlan, J.; Mullen, M. Structural Equation Modelling: Guidelines for Determining Model Fit. Electron. J. Bus. Res. Methods 2008, 6, 53–60. [Google Scholar] [CrossRef]
- Iacobucci, D. Structural equations modeling: Fit Indices, sample size, and advanced topics. J. Consum. Psychol. 2010, 20, 90–98. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 5th ed.; Allyn and Bacon: New York, NY, USA, 2007. [Google Scholar]
- Steiger, J.H. Understanding the limitations of global fit assessment in structural equation modeling. Pers. Individ. Differ. 2007, 42, 893–898. [Google Scholar] [CrossRef]
- Arbuckle, J.L. IBM SPSS Amos 24 User’s Guide, Amos Development Corporation; IBM Corp.: New York, NY, USA, 2016. [Google Scholar]
- Trimurti, C.P.; Utama, I.G.B.R. Bali Tourism Destination Structural Loyalty Model from Consumer Behavior Perspective. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 494–505. [Google Scholar] [CrossRef]
- Akram, U.; Fülöp, M.T.; Tiron-Tudor, A.; Topor, D.I.; Căpușneanu, S. Impact of Digitalization on Customers’ Well-Being in the Pandemic Period: Challenges and Opportunities for the Retail Industry. Int. J. Environ. Res. Public Health 2021, 18, 7533. [Google Scholar] [CrossRef] [PubMed]
- Smędzik-Ambroży, K.; Guth, M.; Majchrzak, A.; Muntean, A.C.; Maican, S.Ș. The Socio-Economics Factors in Family Farms with Different Economic Sustainability Levels from Central and Eastern Europe. Sustainability 2021, 13, 8262. [Google Scholar] [CrossRef]
Variable | Items | N | % |
---|---|---|---|
Generational cohort * | Generation X (40–55 years) | 113 | 18.52% |
Millennials (Gen Y) (22–39 years) | 263 | 43.11% | |
Generation Z (18–21 years) | 234 | 38.36% | |
Gender | Female | 323 | 52.91% |
Male | 287 | 47.09% | |
Level of finalized studies | Secondary school | 226 | 37.12% |
Higher education | 211 | 34.57% | |
Postgraduate | 173 | 28.31% | |
Monthly income of the respondent ** | under 1500 lei | 32 | 5.23% |
1501–3500 lei | 223 | 36.52% | |
3501–5500 lei | 233 | 38.12% | |
5501 lei and over | 123 | 20.13% |
Cronbach’s Alpha | CR | AVE | Kaiser–Meyer–Olkin Measure of Sampling Adequacy | |
---|---|---|---|---|
Expected effort (EE) | 0.883 | 0.845 | 0.733 | 0.739 |
Facilitating conditions (FC) | 0.876 | 0.758 | 0,575 | 0.748 |
Social influence (SI) | 0.883 | 0.719 | 0.560 | 0.715 |
Hedonic motivation (HM) | 0.812 | 0.739 | 0.484 | 0.799 |
Expected performance (EP) | 0.745 | 0.707 | 0.441 | 0.723 |
Perceived utility (PU) | 0.863 | 0.883 | 0.737 | 0.717 |
Positive attitude (PA) | 0.863 | 0.883 | 0.737 | 0.717 |
Mobile application use habit (MH) | 0.990 | 0.984 | 0.943 | 0.848 |
Usage intention (UI) | 0.929 | 0.936 | 0.880 | 0.852 |
Usage behavior (UB) | 0.827 | 0,735 | 0.580 | 0.713 |
Ordered food products quality (QP) | 0.932 | 0.937 | 0.855 | 0.852 |
Speed of delivery (SD) | 0.872 | 0.821 | 0.696 | 0.843 |
Delivery standardization (DS) | 0.781 | 0.722 | 0.565 | 0.715 |
Comfort (CF) | 0.944 | 0.917 | 0.846 | 0.856 |
Interaction with customer service/home delivery staff (IC) | 0.912 | 0.815 | 0.689 | 0.812 |
Positive emotion (PE) | 0.774 | 0.712 | 0.552 | 0.699 |
Model | P | GFI | AGFI | PGFI | NFI | RFI | IFI |
Research obtained values | 0.000 | 0.934 | 0.912 | 0.700 | 0.968 | 0.963 | 0.977 |
Theoretical statistical values | <0.05 | >0.90 | >0.90 * | >0.50 | >0.95 | >0.90 | >0.90 |
Model | TLI | CFI | PNFI | PCFI | RMSEA | PCLOSE | |
Research obtained values | 0.973 | 0.977 | 0.830 | 0.837 | 0.063 | 0.002 | |
Theoretical statistical values | >0.95 | >0.95 | >0.50 | >0.50 | <0.07 ** | <0.05 |
Hypotheses | Correlations | β | P | Std.Error | C.R. | Decision |
---|---|---|---|---|---|---|
H1 | EE → PU | 4.168 | 0.000 | 0.492 | 8.472 | Supported * |
H2 | FC → PU | 5.319 | 0.000 | 0.614 | 8.663 | Supported * |
H3 | SI → PU | 0.241 | 0.000 | 0.021 | 11.476 | Supported * |
H4 | HM → PU | 2.749 | 0.000 | 0.564 | 4.874 | Supported * |
H5 | EP → PU | 1.699 | 0.000 | 0.410 | 4.144 | Supported * |
H6 | PU → MH | 5.528 | 0.000 | 0.669 | 8.263 | Supported * |
H7 | PU → PA | 6.724 | 0.000 | 0.866 | 7.764 | Supported * |
H8 | PA → MH | 4.168 | 0.000 | 0.492 | 8.472 | Supported * |
H9 | MH → UI | 1.011 | 0.000 | 0.110 | 9.191 | Supported * |
H10 | UI → UB | 0.089 | 0.000 | 0.017 | 5.235 | Supported * |
H11 | UB → QP | 1.689 | 0.000 | 0.410 | 4.120 | Supported * |
H12 | UB → SD | 1.015 | 0.000 | 0.008 | 126.875 | Supported * |
H13 | UB → DS | 1.013 | 0.000 | 0.009 | 112.556 | Supported * |
H14 | UB → CF | 0.973 | 0.000 | 0.015 | 64.867 | Supported * |
H15 | UB → IC | 0.861 | 0.000 | 0.020 | 43.050 | Supported * |
H16 | UB → PE | 1.687 | 0.000 | 0.410 | 4.115 | Supported * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gârdan, D.A.; Epuran, G.; Paștiu, C.A.; Gârdan, I.P.; Jiroveanu, D.C.; Tecău, A.S.; Prihoancă, D.M. Enhancing Consumer Experience through Development of Implicit Attitudes Using Food Delivery Applications. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2858-2882. https://doi.org/10.3390/jtaer16070157
Gârdan DA, Epuran G, Paștiu CA, Gârdan IP, Jiroveanu DC, Tecău AS, Prihoancă DM. Enhancing Consumer Experience through Development of Implicit Attitudes Using Food Delivery Applications. Journal of Theoretical and Applied Electronic Commerce Research. 2021; 16(7):2858-2882. https://doi.org/10.3390/jtaer16070157
Chicago/Turabian StyleGârdan, Daniel Adrian, Gheorghe Epuran, Carmen Adina Paștiu, Iuliana Petronela Gârdan, Daniel Constantin Jiroveanu, Alina Simona Tecău, and Diana Magdalena Prihoancă. 2021. "Enhancing Consumer Experience through Development of Implicit Attitudes Using Food Delivery Applications" Journal of Theoretical and Applied Electronic Commerce Research 16, no. 7: 2858-2882. https://doi.org/10.3390/jtaer16070157